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Experimentally realized in situ backpropagation for
deep learning in photonic neural networks
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Integrated photonic neural networks provide a promising platform for energy-efficient, high-throughput
machine learning with extensive scientific and commercial applications. Photonic neural networks efficiently
transform optically encoded inputs using Mach-Zehnder interferometer mesh networks interleaved with
nonlinearities. We experimentally trained a three-layer, four-port silicon photonic neural network with
programmable phase shifters and optical power monitoring to solve classification tasks using “in situ
backpropagation,” a photonic analog of the most popular method to train conventional neural networks. We
measured backpropagated gradients for phase-shifter voltages by interfering forward- and backward-
propagating light and simulated in situ backpropagation for 64-port photonic neural networks trained onMNIST
image recognition given errors. All experiments performed comparably to digital simulations (>94% test
accuracy), and energy scaling analysis indicated a route to scalable machine learning.

N
eural networks (NNs) are ubiquitous com-
puting models loosely inspired by the
structure of a biological brain. Such mod-
els are trained on input data to implement
complex signal processing or “inference”

(1, 2), powering various modern technologies
ranging from language translation to self-
driving cars. The required energy for training
and inference to power these technologies has
recently been estimated to double every 5 to
6 months (3), and thus necessitates an energy-
efficient hardware implementation for NNs.
To address this problem, programmable

photonic neural networks (PNNs) have been
proposed as a promising, scalable, and mass-
manufacturable integrated photonic hard-
ware solution (4). A popular implementation
of PNNs consists of silicon photonic meshes,
N � N networks of Mach-Zehnder interfer-
ometers (MZIs) and programmable phase
shifters (5–7), which optically accelerate the
most expensive operation in a PNN: unitary
matrix-vector multiplication (MVM). The MVM
y ¼ Ux is implemented by simply sending
an input mode vector x (optical phases and
modes in N input waveguides) through the
network implementingU to yield output modes
y (4, 6, 8). This fundamental mathematical op-
eration, based on optical scattering theory,
additionally enables various analog signal pro-
cessing applications beyond machine learning
(4, 9) such as telecommunications (8), quantum
computing (10, 11), and sensing (12).

Recently, “hybrid” PNNs, which interleave
programmable photonic linear optical elements
(e.g., meshes) and digital nonlinear activation
functions (9, 13), have proven to be a low-
latency and energy-efficient solution for NN
inference in circuit sizes of up toN ¼ 64(14).
Compared to current fully analog PNNs with
electro-optic (EO) nonlinear activations (15, 16),
hybrid PNNs get around the critical problem
of photonic loss and offermore versatility than
multilayer PNNs for between-layer logical oper-
ations that donot favor optics. Such featuresmay
be present in a number of state-of-the-art ma-
chine learning architectures such as recurrent
neural networks (17) and transformers (18, 19).
When fully optimized, the energy efficiency of
PNNinferencehasbeenestimated tobeup to two
orders of magnitude higher than that of state-
of-the-art digital electronic application-specific
integrated circuits (ASICs) in artificial intelli-
gence (AI) (20). However, despite the success in
PNN-based inference, efficient on-chip training
of PNNs has not been demonstrated owing to
substantially higher experimental complexity
compared to the inference procedure.
In this study, we experimentally demon-

strated a photonic implementation of back-
propagation, the most widely used method
of training NNs (1, 2). [A minimal bulk optical
demonstration has been previously explored
(21).] Backpropagation is generally performed
by propagating error signals backward through
the NNs to determine programmable parame-
ter gradients via the chain rule. In our multi-
layer PNN device, we performed in situ training
on a foundry-manufactured silicon photonic in-
tegrated circuit by sending light-encoded errors
backward through the PNN and measuring
optical interference with the original forward-
going “inference” signal (22). Once trained,
our chip achieved an accuracy similar to that
of digital simulations, adding new capabilities

beyond existing inference or in silico learning
demonstrations (4, 23, 24). We further de-
signed and experimentally validated an analog
(electro-optic) phase-shifter update protocol, a
key improvement over past proposals requiring
more energy-intensive “digital subtraction” (22).
Finally, we systematically analyzed energy and
latency advantages of in situ backpropagation
and its scalability to larger (64� 64) PNN sys-
tems. Our findings ultimately pave the way for
energy-efficient optoelectronic training of neu-
ral networks and optical systems more broadly.

Photonic neural networks

Webuilt a hybrid PNNbyalternating sequences
of analog programmable unitary MVM op-
erations U ‘ð Þ�h→ ‘ð Þ� [implemented on a custom-
designed silicon photonic triangular mesh (6)]
and digital nonlinear transformations f ‘ð Þ [im-
plemented using autodifferentiation software
(25–27)] where layer‘ ≤ L (total ofL layers). The
PNN was parameterized by programmable
phase shifts h

→∈ ½0; 2pÞD , where D represents
number of PNN phase shifters. Mathemati-
cally, the following “inference” functionsequence
transformed input x ¼ x 1ð Þ, proceeding in a
“feedforward”manner to the output z^ :¼ x Lþ1ð Þ

(Fig. 1, A to D):

y ‘ð Þ ¼ U ‘ð Þx ‘ð Þ ð1Þ

x ‘þ1ð Þ ¼ f ‘ð Þ y ‘ð Þ
� �

ð2Þ

The “cost function” is defined as L x; zð Þ ¼
c z^ xð Þ; z� �

, where c represents the error be-
tween z^ and ground truth label z. Backprop-
agation updates parameters h

→
that are on

D-dimensional gradient @L=@h→ evaluated for
“training example” x; zð Þ (or averaged over a
batch of examples).
Each MZI was parametrized by thermo-optic

phase shifters that locally heat the waveguides
using current sourced from a separate control
driver board (Fig. 2, A and B). Phase shifts were
placed at the input (f, voltageVf) and internal
(q, voltage Vq) arms of all MZIs to control the
propagation pattern of infrared C band (1530 to
1565 nm) light, enabling arbitrary unitarymatrix
multiplication.We embedded an arbitrary4� 4
unitary matrix multiply in a 6� 6 triangular
network of MZIs. This configuration incorpo-
rated two 1� 5 photonic meshes on either end
of the 4� 4 “matrix unit” capable of sending
any input vector x and measuring any output
vector y from Eqs. 1 and 2. These “generator”
and “analyzer” optical input/output (I/O) cir-
cuits (Figs. 1E and 2B and fig. S5) require cal-
ibrated voltagemappingsq Vqð Þ; f Vf

� �
to control

optical phase (4, 28, 29) (fig. S2).

Backpropagation demonstration

Our core result (Fig. 1E) was experimental re-
alization of backpropagation on a photonic
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triangular mesh MVM chip using a custom
optical rig and silicon photonic chip (fig. S1)
(22). Our backpropagation-enabled architec-
ture differs in three ways from a typical PNN
photonic mesh (4):
1) We enabled “bidirectional light propa-

gation,” the ability to send and measure light
propagating left to right or right to left through
the circuit (as depicted in Fig. 1E).
2) We implemented “global monitoring” to

measure optical power ph propagating through
any phase shift h in the circuit using 3% grating
taps (shown in the inset of Fig. 1E and Fig. 2,
A and B). In our proof-of-concept setup, we
used an infrared (IR) camera mounted on an
automated stage to image these taps through-
out the chip (fig. S1E).
3) We implemented both amplitude and

phase detection [improving on past approaches
(30)] using a self-configuring programmable
matrix unit layer (28) on both generator and
analyzer subcircuits (Figs. 1E and 2B and fig.
S5), which by symmetry worked for sending
and measuring light that propagated forward
or backward through the mesh.

These improvements on an already versa-
tile hardware platform enabled backpropa-
gation entirely using physical optical power
measurements to obtain cost gradients (22).
As shown in Fig. 1E, backpropagation required
global optical monitoring, and bidirectional
optical I/O was required to switch between
forward- and backward-propagating signals
to experimentally realize in situ backpropagation.
Equipped with these additional elements, our
protocol can be implemented on any feed-
forward photonic circuit (31) with the requi-
site analyzer and generator circuitry (Fig. 1 and
fig. S5).
Here we give a brief summary of the pro-

cedure (further explained in the supplemen-
tary text). The “forward inference” signal x ‘ð Þ

and “backward adjoint” signal x ‘ð Þ
adj are sent

forward and backward, respectively, through
the mesh that implements U ‘ð Þ. The “sum” vec-
tor x ‘ð Þ � iðx ‘ð Þ

adjÞ� is sent forward, and subtract-
ing the forward and backward measurements
from it digitally yields the gradient (22), a
reverse-mode differentiation process that we
call an “optical vector-Jacobian product (VJP).”

Analog update
Going beyond an experimental implementation
of a past theoretical proposal (22), we addi-
tionally explored a more energy-efficient fully
analog gradient measurement update for the
final step, avoiding a digital subtraction update.
Instead of global monitoring optical power in
the first two steps and the final “sum” step, we
toggled an adjoint phase z tð Þ, a square wave
modulation with period T that periodically
toggles between “sum” and “difference” set-
tings z ¼ 0 and p corresponding to signal
inputs x ‘ð Þ

T ¼ x ‘ð Þ∓iðx ‘ð Þ
adjÞ� . The gradient is

@L=@h ¼ ph;þ � ph;�
� �

=4, or half the “signed
amplitude” of the AC (mean-subtracted) sig-
nal (supplementary text 2.6 and fig. S6). The
sum and difference inputs x ‘ð Þ

T were computed
digitally (off-chip), requiringO Nð Þoperations to
compute per input. The sum and difference in-
puts were directly programmed at the generator
to compute phase gradients, and correspond-
ing sum and difference signal power measure-
ments at each phase shifter subtracted in the
analog domain to update phase-shift volt-
ages. One option to efficiently achieve a periodic
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Fig. 1. In situ backpropagation concept. (A) Example machine learning
problem: An unlabeled 2D set of points that are formatted to be input into a PNN.
(B) In situ backpropagation training of an L-layer PNN for the forward direction
and (C) the backward direction showing the dependence of gradient updates
for phase shifts on backpropagated errors. (D) An inference task implemented on
the actual chip resulted in good agreement between the chip-labeled points and
the ideal implemented ring classification boundary (resulting from the ideal
model) and a 90% classification accuracy. (E) Our proposed scheme performed
the three steps of in situ (analog) backpropagation, using a 6� 6 mesh

implementing coherent 4� 4 bidirectional unitary matrix-vector products using a
reference arm. The (1) forward, (2) backward, and (3) sum steps of in situ
backpropagation are shown. Arbitrary input setting and complete amplitude and
phase output measurement were enabled in both directions using the reciprocity
and symmetries of the triangular architecture. All powers throughout the
mesh were monitored by an IR camera using the tapped MZI shown in the inset
for each step, allowing for digital subtraction to compute the gradient (22).
These power measurements performed at phase shifts are indicated by green
horizontal bars.
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z toggle is to use the summing architecture
in Fig. 2C, which sums x ‘ð Þ and iðx ‘ð Þ

adjÞ� inter-
ferometrically with a fast modulator that im-
plements z. In an optimized scheme, wewould
physically measure the gradient and update
the phase-shift voltage in the analog domain
using a photodiode, differential amplifier (im-
plementing an analog subtraction), and a
“sample-and-hold” update circuit using only a
single toggle (fig. S6, B and C). This scheme,
extended to energy-efficient “batch updates”
incorporating data from multiple training
examples, was tested on a single phase shifter
to demonstrate the logic of this electronic feed-
back scheme (materials and methods, supple-
mentary text 2.6, and fig. S7). Our demonstration
avoided a costly digital-analog and analog-
digital conversion; when fully integrated,
our approach avoids additional digital mem-
ory complexity required to program N2 ele-
ments, enabling a truly analog backpropagation
scheme.
The local feedback just described updates each

phase shifter h using the measured gradient:

@L
@h

¼ I xhxh;adj
� �

¼ xh;þj2�
�� ��xhj2 � jxh;adjj2

2
¼ ph;þ � ph � ph;adj

2
¼ ph;þ � ph;�

4
ð3Þ

where the sum field xh;þ ¼ xh � ix�h;adj and
the last equality of Eq. 3 indicate the mathe-
matical equivalence of “digital subtraction”
(Fig. 1E) and our proposed “analog subtrac-
tion” scheme (Fig. 2, C and D, and figs. S6
and S7). Pseudocode and the complete back-
propagation protocol are provided in supple-
mentary text 2.5. Digital and analog gradient
update steps can both be implemented in
parallel across all PNN layers once the mea-
surements from forward and backward steps
are determined.
We experimentally estimated the accuracy

of the analog gradient measurement for a
matrix optimization problem (7) by digital
processing of the optical powermeasurements
(Fig. 2D). We programmed a sequence of in-

puts into the generator unit of our chip and
recorded the square-wave response oscillating
betweenph;þ andph;� and separately subtracted
the twomeasurements to find the gradient with
respect to h.
We implemented in situ backpropagation

in a single photonic mesh layer, optimizing
the cost function defined for output port i via
Lr ¼ 1� ju^ T

ru
�
r j2 or a “batch” cost functionL ¼X4

r¼1
Lr=4 averaged over four inputs (“batch

size”M ¼ 4). Here, ur is row r of U, a target
matrix that we chose to be the four-point dis-
crete Fourier transform [DFT(4)], andu^ r is row
r of Û , the implemented matrix on the device.
For our gradient measurement step, we sent in
the derivative yadj ¼ @Lr=@y ¼ �2ðu^ T

ru
�
rÞ�er

to measure an adjoint field xadj , where er is
the rth standard basis vector (1 at positionm,
0 everywhere else).
We evaluated gradient direction error as

1� g � g^, comparing normalized measured
( g^ ) and predicted gradients g ¼ @L=@h→�
∥@L=@h→∥�1 . Both digital and analog gradi-
ents were less accurate near convergence, with
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Fig. 2. Analog gradient experiment and simulation. (A) The photonic mesh
chip was thermally controlled and wirebonded to a custom printed circuit
board (PCB) with fiber array for laser input/output and a camera overhead for
imaging the chip. Zooming in (IR camera image) reveals the core control-and-
measurement unit of the chip, enabling power measurement using 3% grating tap
monitors and a thermal TiN phase shifter nearby. (B) A 5-mW 1560-nm laser
and a calibrated control unit was used for input generation and output detection.
The IR camera over the chip imaged all grating tap monitors necessary for
backpropagation. (C) Analog gradient update might optionally be implemented

by introducing a summing interference circuit [not implemented on the chip in
(B)] between the input and adjoint fields. (D) The adjoint phase was toggled
between z ¼ 0 and p to evaluate the analog gradient measurement @Li=@h
for i ¼ 1 to 4. (E) Gradients measured using the toggle scheme yielded
approximately correct gradients when the implemented mesh was perturbed from
the optimal (target) unitary given 1 rad phase error standard deviation.
(F) Measured normalized gradient error decreased with cost function [distance
between implemented Û h

→� �
and optimal U ¼ DFT 4ð Þ], and analog batch and

single-example gradients outperformed digital gradients.
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the errors empirically decreasing quadratically
with cost L (Fig. 2F). The analog batch gra-
dient (trained by averaging all four gradients
to give @L=@h) validated the photonic portion
of the batch scheme (figs. S6B and S7). All gra-
dient errors, regardless of implementation, scaled
similarly with convergence distance; uncali-
brated thermal cross-talk likely resulted in
gradient measurement errors that were compa-
rable to systematic power errors at the taps.
Digital subtraction encountered different losses
and coupling efficiencies in bidirectional tap
gratings, whereas analog gradientmeasurements
involved subtraction of only forward-going fields
at forward gratings, likely resulting in superior
performance (Fig. 2F). Finally, error in the full
analog subtraction scheme was independent
of batch size for the gradient calculation, and
no significant deviation due to timing jitter or
signal distortion was observed (fig. S7).

Photonic neural network training

To test overall on-chip training, we assessed the
accuracy of in situ backpropagation to train
multilayer PNNs using a digital subtraction

protocol (22) (Fig. 3A and fig. S3) automated
with Python software (32). We trained our
chip to implement L ¼ 3 layers with N ¼ 4
ports to assign labeled noisy synthetic data, gen-
erated using Scikit-Learn (33), in 2D space to a
0 or 1 label based on the data points’ spatial
location (Figs. 1A; 3, E and H; and fig. S4, I and
J). We performed an 80%:20% train–test split
(200 train points, 50 test points) and trained
on only train points to avoid overfitting.
To implement classification, ourPNNassigned

a probability to each point being assigned a 0
or 1 on the basis of the following model:

z^ xð Þ ¼ softmax2ð U 3ð Þ�� ��U 2ð Þ U 1ð Þx
�� ��jjÞ ð4Þ

where softmax2 is the standard softmax (nor-
malized sigmoid) function applied to two
quantities: the total power in outputs 1 and 2
and total power in ports 3 and 4. The input
data x was engineered such that any 2D point
had the same total input power as a four-port
vector (materials and methods). Each point
was classified red or blue (0 or 1, respectively) on
the basis of whether the output of Eq. 4 obeyed

the condition z0 > z1 for each input (Fig. 3),
which we optimized using a binary cross-entropy
cost function (materials and methods).
Our chip performed data input, output, and

matrix operations for all PNN layers. At each
layer output, we digitally performed a square-
root operation on output power to implement
absolute-value nonlinearities [off-chip via JAX
and Haiku (26, 27)] and recorded output phases
for the backward pass of in situ backpropagation.
Ideally, PNNs are controlled by separate pho-
tonic meshes of MZIs for each linear layer to
achieve low power consumption. However,
to save on carbon footprint, we reprogrammed
the same chip to perform successive linear
layers because basic operating principles re-
main the same. We used the Adam gradient
update (34) with a learning rate of 0.01 and
performed digital simulations at each step to
fully compare measured and predicted per-
formance. Before on-chip training experi-
ments, we calibrated all phase shifters on the
chip (materials and methods and fig. S2) and
performed forward inference with digitally
pretrained neural network weights to verify
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Fig. 3. In situ backpropagation experiment. In situ backpropagation training
(34) was performed for two classification tasks solvable by (A) a three-layer hybrid
PNN consisting of absolute-value nonlinearities and a softmax (effectively sigmoid)
decision layer. (B) Three-step digital subtraction gradient update given monitored
waveguide powers and the measured gradient output. (C) For the circle dataset,
the digital and in situ backpropagation training curves show excellent agreement
resulting in (D) model accuracy of 96% test and 93% train (depicted here for

iteration 930, showing the true labels and the learned classification model outcomes)
and (E) histogram of low gradient error. (F) For the moons dataset, our phase
measurements were sufficiently inaccurate owing to hardware error affecting training,
leading to a lower model model accuracy of 94% test and 87% train (green). Using
ground truth phase (red), the device achieved (G) sufficiently high model accuracy
of 98% test and 95% train. (H) The histogram of gradient errors improved
considerably by roughly an order of magnitude using the correct phase measurement.
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accurate calibration.We achieved 90% and 98%
device test set accuracy for ring and moons
datasets, respectively (fig. S4, I and J). Because
our photonic anddigital implementation agreed
closely in inference accuracy, we performed
network training on-chip while conducting
evaluations off-chip for convenience.
During training of the circle dataset, predicted

andmeasured powers for grating tap-to-camera
monitormeasurements showedexcellent agree-
ment across all waveguide segments required
for accurate gradient computation (Fig. 3B,
fig. S3, and movie S1). The training curves in
Fig. 3C indicate that stochastic gradient descent
was a highly noisy training process for both pre-
dicted and measured curves owing to the noisy
synthetic dataset about the boundary and our
choice of single-example training as opposed
to batch training. These large swings appeared
roughly correlated between the simulated and
measured training curves (Fig. 3E), and we suc-
cessfully achieved93% train and96% testmodel
accuracy (Fig. 3D and fig. S4, A to C). We then
trained the moons dataset, applying the same
procedure to achieve 87% train and 94% test
model accuracy (Fig. 3F, green versus red).When
using the predicted phase and measured am-
plitudes, we reduced gradient error by roughly
an order of magnitude on average, resulting in
95% train and 98% test model accuracy (fig. S4,
D to F), which agreed with digital training (Fig.
3, F to H, and movie S2). This improvement
underscores the importance of accurate phase
measurement for improved training efficiency.
Further monitoring errors could be reduced by
increasing signal-to-noise ratiousing integrated
avalanche photodiodes (35), noninvasive light
monitoring (36), or phase shifter–based power
monitoring (37).

Simulations and scalability

Given that our experimental results for N ¼ 4
PNNs showed evidence of hardware error af-
fecting training, we assessed the scalability for
N ¼ 64 PNNs on the MNIST handwritten
digit dataset (38) in the presence of error to
better understand the relative contributions
at scale. We implemented a PNN simulation

framework in Simphox (25) using JAX and
Haiku (26, 27) to simulate an in situ back-
propagation training given a grid search of
systematic and noise errors (materials and
methods). After 100 epochs using M ¼ 600
batch size, we achieved a maximum test ac-
curacy of roughly 97:2% in the ideal case and
a performance degradation to roughly 95%
on average (Fig. 4, B and C). Phase and am-
plitude errors arising from photodetector noise
and phase-shift quantization and calibration
errors affected convergence in error the most.
Overall, our MNIST simulation results suggest
that in situ backpropagation is relatively robust
at scale to noise and hardware errors, which
are difficult to eliminate completely in current
analog computing systems.
We also considered the energy and latency

trade-off with accuracy for the optimized ana-
log gradient update scheme assuming current
state-of-the-art electronics cointegrated with
active photonic components (supplementary
text 2.7). Collectively, our simulation results
(Fig. 4) and energy calculation contours (fig.
S8, supported by tables S1 to S6) indicated
minimal performance degradation for MNIST
training simultaneouslywith threefold improve-
ment in backpropagation energy efficiency.
This assumed 100-fJ floating point operations
for equivalent digital models (39) and tap noise
factor of stap < 0:01 in the regime where optical
power begins to dominate the energy consump-
tion. Errors may be further reduced by improv-
ing avalanche photodiode sensitivity, reducing
optical component loss, or increasing overall
input optical power, a key factor in the energy-
error trade-off (tables S1 to S6). Trade-off of
input power and photodiode noise generally
enforces a hard limit on scalability of photonic
meshes (i.e., number of MZI layers N) because
all photonic components have loss (16, 40).

Discussion and outlook

In this study, we have demonstrated practically
useful photonic machine learning hardware
by physically measuring gradients calculated
through interferometric measurements of in
situ backpropagation (Fig. 1). We concluded

that gradient accuracy played an important
role in reaching optimal results during training
and decreases near convergence (Fig. 2). As a
core application, we trained multilayer PNNs
using our gradient measurements and found
good agreement with digital training simula-
tions despite optical I/O calibration errors and
camera noise at the global monitoring taps
(Fig. 3). Correcting for phasemeasurement error
yielded training curveshighly correlated todigital
predictions, so optical I/O calibration accuracy is
vital. Even though individual updateswere ideal-
ly faster to compute, higher error resulted in
effectively longer training times that mitigated
this benefit. To better understand this trade-off,
we explored an optimized regimeof our system,
which considered cointegration of complemen-
tary metal-oxide semiconductor (CMOS) elec-
tronics with photonics (fig. S8 and tables S1 to
S6), and found that in the regime of photonic
advantage (e.g., N ¼ 64 at sufficiently large
batch sizes), we could successfully train MNIST
close to digital equivalents (Fig. 4).
Our demonstration (Fig. 3) and energy

calculations (fig. S8) suggest that in situ
backpropagation, a technique widely used
in machine learning for its efficiency, also
efficiently trains hybrid PNNs. Our hybrid
approach optically accelerated the most com-
putationally intensiveO N2ð Þ operations, where-
as nonlinearities and their derivatives, which
are O Nð Þ computations, were implemented
digitally. This is reasonable becauseO Nð Þ time
is required to modulate and measure optical
inputs and outputs for the overall network,
regardless of hybrid or all-analog operation.
Because optics is ideal for low-latency and low-
energy signal communication, our in situ back-
propagation scheme could improve energy
efficiency in data centermachine learning and
neural network accelerators (e.g., graphics
processing units) with optical interconnects,
in which data are already optically encoded.
Such schemes may be compatible with mixed-
signal schemes for accelerators that already
aim to reduce the current communication en-
ergy bottleneck (39, 41) in the race to address
the energy-doubling AI problem (3).
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Fig. 4. In situ backpropagation simulation. (A) A two-layer PNN was simulated on
MNIST data using a previously explored PNN benchmark incorporating rectangular
photonic meshes (31). (B and C) Marginal training curve statistics (shaded regions
indicate standard deviation error range about the mean) were computed over a

grid search of 72 tap noise, loss, and I/O amplitude and phase errors (materials
and methods). The dominant contributers were (B) tap noise factor stap (2.7%
increase for stap ¼ 0:02 from 3:7T0:7% average error) and (C) phase measurement
error sf (1.9% increase for sf ¼ 0:05 from 4T1% average error).
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Population-based methods (42), direct feed-
back alignment (43, 44), and perturbative ap-
proaches (16) have some advantages but are
ultimately less efficient for training neural net-
works compared to backpropagation, especially
for hybrid PNNs. Unlike “receiverless” fully ana-
log PNNs (16), hybrid PNNs require optoelec-
tronic (i.e., digital-analog and analog-digital)
conversions for each layer, which can slowdown
perturbative training. In contrast to perturbative
approaches, in situ backpropagation calculates
gradients in a modular framework compatible
with larger-scale AI applications.
Although this work primarily dealt with hy-

brid PNNs, our backpropagation scheme could
be compatible with all-analog or receiverless
implementations implementing EO nonli-
nearities on-chip (15, 16, 45). Previous all-analog
PNN implementations have suffered from ex-
ponential loss scaling because the same optical
modes propagated through all L layers (16).
We propose to reduce this scaling from ex-
ponential to linear by instead splitting input
light equally across the layers and modulating
each layer input by EO activations that depend
on other layer output powers, which acts to
“connect” the layers without an explicit optical
connection (fig. S9, A and H). After incorporat-
ing electronic and optical switches, this “dis-
tributed nonlinearity” architecture can operate
as a hybrid PNN platform for training or an
all-analog platform for inference with full vis-
ibility of EO nonlinearity response to aid back-
propagation training (fig. S9, B to G). The
scaling and errors of these schemes, given the
need to accurately model nonlinear activations
for backpropagation, are left to a future work.
Ultimately, these all-analog schemes suffer

from limitedversatility tomanipulate or transform
data. Depending on the problemor architecture,
“hybridizing” the all-optical PNN with digital
platforms can add some flexibility when conve-
nient at the expense of optoelectronic conversion
energy. For instance, flexibility of large-scale hy-
brid PNN models has been demonstrated via
high ResNet-50 image classification accuracy
using commercially viable photonic meshes (14).
Our experimental demonstration indicates a
route to train such models on backpropagation-
enabled devices that few other trainingmethods
can efficiently produce. In situ backpropagation
can also train “optical transformers” that lever-
age hybrid PNNs for natural language pro-
cessing and computer vision applications (19).
The periodic application of digital activations,
currently infeasible in optics [e.g., layer normal-
ization (19)], enables one-to-one correspondence
of hybrid PNNs and state-of-the-art large-scale
NN models.
Our demonstration is an experimental ana-

log of “inverse design” of photonic devices.
Inverse design implements reverse-mode auto-
differentiation with respect to material relative
permittivity by interfering adjoint and forward

fields. This forms the basis of the original proof
of in situ backpropagation (22) because phases
are trivially related to material relative permit-
tivity changes. This suggests an even broader
application domain for our technique to op-
timizing arbitrary programmable linear optical
devices with no obvious calibration scheme,
including robust designs (e.g., using multiport
directional couplers) and recirculating designs
(46, 47). The analog gradient update exper-
iment in Fig. 2 is relevant to calibration (6)
because minimizing the cost functionLmax-
imizes device fidelity.
Our results ultimately have wide-ranging

implications for bridging the fields of pho-
tonics and machine learning. Backpropaga-
tion is themost efficient andwidely usedneural
network training algorithm formachine learn-
ing, and our demonstration of this popular
echnique as a physical implementation presents
promising capabilities of hybrid PNNs to re-
duce carbon footprint and counter the expo-
nentially increasing costs of AI computation.
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Editor’s summary
Commercial applications of machine learning (ML) are associated with exponentially increasing energy costs, requiring
the development of energy-efficient analog alternatives. Many conventional ML methods use digital backpropagation
for neural network training, which is a computationally expensive task. Pai et al. designed a photonic neural network
chip to allow efficient and feasible in situ backpropagation training by monitoring optical power passing either forward
or backward through each waveguide segment of the chip (see the Perspective by Roques-Carmes). The presented
proof-of-principle experimental realization of on-chip backpropagation training demonstrates one of the ways that ML
could fundamentally change in the future, with most of the computation taking place optically. —Yury Suleymanov
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