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Abstract: We experimentally demonstrate an on-chip electro-optic circuit for realizing arbitrary
nonlinear activation functions for optical neural networks (ONNs). The circuit operates by
converting a small portion of the input optical signal into an electrical signal and modulating
the intensity of the remaining optical signal. Electrical signal processing allows the activation
function circuit to realize any optical-to-optical nonlinearity that does not require amplification.
Such line shapes are not constrained to those of conventional optical nonlinearities. Through
numerical simulations, we demonstrate that the activation function improves the performance of
an ONN on the MNIST image classification task. Moreover, the activation circuit allows for the
realization of nonlinearities with far lower optical signal attenuation, paving the way for much
deeper ONNSs.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Machine learning and artificial neural networks are playing an increasingly important role in
a number of important application areas, ranging from health care to self-driving cars. Optics
provides a unique platform for high-speed, low latency, and energy-efficient matrix-vector
multiplications, the computational bottleneck in artificial neural networks. In the late 1980s,
optical neural networks (ONNs) were originally proposed based on free-space optical setups
consisting of lenses and holographic components [1,2].

Over the last several decades, the development of integrated photonic technologies has opened
up new research directions into large-scale optical information processing in programmable
microwave photonics and ONNs [3—7]. Particularly for ONNS, integrated interferometer meshes
implemented in a silicon photonics platform have been proposed for accelerating matrix-vector
multiplications [4,8], with a constant computational time scaling over the dimension of the matrix.
Such scaling is a significant advantage over digital processors, where the computational time
cost of matrix-vector multiplications scale quadratically with the matrix dimension. Moreover,
the large modulation rates and signal bandwidths available in photonic platforms allows for the
realization of neural networks with much larger effective clock rates than in electronic circuits,
which are limited by thermal effects.

Nonlinear activation functions are an indispensable component of artificial neural networks,
allowing them to learn complex nonlinear relationships between their inputs and outputs. However,
implementing nonlinear activation functions in large-scale integrated ONNs remains a significant
challenge. One of the main limitations in realizing an on-chip optical nonlinear function comes
from the relatively weak nonlinearities available in photonic platforms. As a result, implementing
strong nonlinear activation functions would require very long waveguide interaction lengths and
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high optical signal powers that undesirably increase the footprint and power consumption of the
ONN. While the optical nonlinearity can be enhanced by resonant structures [9], this comes
at the cost of an unavoidable trade-off in bandwidth and the added requirement of calibration
circuitry for the optical resonators [10-12]. Another challenge with using optical nonlinearities
in ONNS is that their nonlinear responses are static, largely being determined during device
fabrication through lithographically defined components. This limits the flexibility of such
activation functions to generate different responses and to adapt to different machine learning
tasks. Moreover, for a fixed nonlinear response with a relatively large activation threshold,
the performance of very deep ONNs with many layers is limited by the high optical loss of
many nonlinear activation layers. For instance, the activation threshold of an optical saturable
absorption from 2D-materials is fixed by the choice of material in the range of 1-10 mW [13-15].
Therefore, as light propagates through many layers of an ONN, the strength of the nonlinear
response becomes continuously weaker, and the signal power may drop below the activation
threshold. In contrast, electro-optics opens up the possibility for much stronger and more tunable
nonlinearities.

In this work, we fabricate and experimentally demonstrate a recently proposed electro-optic
architecture for realizing optical-to-optical activation functions [16]. Related proposals of
realizing optical nonlinearities using electro-optics have been proposed in Refs. [17-20]. In our
scheme, rather than using traditional optical nonlinearities we fabricate structures on a photonic
integrated circuit to measure a small portion of the incoming optical signal power and use electro-
optic modulators to modulate the original optical signal. Our prototype relies on thermo-optic
modulation but, in principle, the demonstrated activation can use fast modulation mechanisms
to enable ONNs operating with GHz-rate computational speeds. This activation circuit allows
for the realization of strong nonlinearities without the requirement of having additional optical
sources between each layer of the network [20]. We also demonstrate an extension of the circuit
capabilities originally proposed in Ref. [16] to realize arbitrary nonlinearities via electrical signal
processing with ultra-low activation thresholds. In this work, we focus on the implementation of
the activation function that does not use optical gain elements.

The remainder of this paper is organized as follows. In section 2 we review the activation circuit
from Ref. [16] and discuss its experimental realization in a silicon nitride (SiN) platform. In
section 3, we report the measured activation circuit response and demonstrate that the fabricated
device can generate a range of nonlinear optical transfer functions. In section 4, using numerical
ONN simulations, we demonstrate that the measured activation functions support low optical
transmission losses and high inference accuracy.

2. Nonlinear activation function

In this section, we briefly review the electro-optic activation function architecture proposed in
Ref. [16]. We then present an experimental realization of this activation function circuit which is
fabricated in a SiN technology platform.

2.1. Optical-to-optical activation function circuit

In this work, we focus on the ONN architecture shown in Fig. 1(a) based on waveguide Mach-
Zehnder interferometer (MZI) meshes and reprogrammable phase shifters [4]. A single layer
of the ONN architecture consists of one optical interference unit, which implements a unitary
matrix-vector multiplication, followed by the element-wise application of the nonlinear activation
function circuit, corresponding to the green boxes in Fig. 1(a). The optical-to-optical nonlinear
activation function is achieved by converting a small portion of the optical input signal into an
electrical signal. The electrical signal is then applied to an intensity modulator which controls
the intensity of the remaining portion of the original optical signal. For an input signal with field
amplitude z, the resulting nonlinear optical activation function f(z) is a result of both the intensity
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modulator response as well as the components in the electrical signal pathway. The schematic of
the proposed nonlinear activation function circuit is shown in Fig. 1(b). The input signal first
enters a directional coupler with coupling coefficient of @, which routes a portion, a|z|?, of the
input optical power to a photodetector. The photodetector converts the received optical power into
an electrical current, I,g = R -« |z|%, where R is the photodetector responsivity. A transimpedance
amplifier with gain G converts the current into a voltage Vs = G - R - a|z|>. The output voltage of
the optical-to-electrical conversion circuit is then transformed by a nonlinear signal conditioner
with transfer function H(-). Finally, the conditioned voltage signal, H(V) is combined with a
static bias voltage V}, to generate the modulating signal V,, = V}, + H (G‘.Ralzlz). This signal
modulates the optical signal routed through the intensity modulator, thus implementing an
activation function. The transfer function of the activation can be written as

f(2) =2Vl —aexp (—jzﬂVTopt)~tm(Z), (D

where v is the frequency of the optical signal, 7,,(z) is the transfer function of the intensity
modulator, 7op is the optical delay time accounting for the contributions from the group
delay of the optical-to-electrical conversion stage (7, ), the delay associated with the nonlinear
signal conditioner (1), and the RC time constant of the phase modulator (1) [16]. In
practice, the activation function could be realized using a number of different modulator
designs, including Mach-Zehnder interferometer (MZI) modulators, ring modulators, and electro-
absorption modulators, as shown in the inset of Fig. 1(b). Here we focus on a fabricated device
that uses an MZI, which has a transfer function given by

A A
IMz1 = J €Xp (—j (¢0 + 7¢)) cos (TQS), ()

where ¢ is the phase accumulated by the light propagating through the MZI when no voltage is
applied to the phase shifter. A¢ is the phase shift induced by the modulating signal V,, and is
given by

AG(V) = VL,,V'" - Vln (V,, + H(G%a|z|2)). 3)

V is the voltage that the phase shifter requires to produce a 7 phase shift. The activation function
of the proposed circuit with MZI modulator is calculated by substituting Eq. (2) and Eq. (3) in
Eq. (1) to obtain:

fmz1(z) =jzV1 — a cos WV

Vi + H(G‘Ralzlz))
oo+ AGTelT)

“4)
V, + H(Gﬂia|z|2)l)

- exp (—j [varopl +¢o+m A

Equation 4 clearly shows that the activation function exhibits a highly nonlinear response.
The strength of the activation function’s nonlinearity can be increased by increasing either the
TIA gain G or the photodiode responsivity R. The nonlinearity can also be increased through
increasing the directional coupler coefficient . However, tapping out more optical power
undesirably increases the linear insertion loss of the circuit. From Eq. (4), the electrical biasing
of the activation phase shifter, given by Vj, is an important degree of freedom for controlling the
shape of the nonlinear response.

2.2. Fabricated device

Figure 1(c) shows a micrograph of the on-chip nonlinear activation function circuit using a SiN
waveguide technology. The circuit consists of a 1:99 directional coupler (DC) and a MZI with a
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Fig. 1. (a) Schematic of the optical interferometer mesh implementation of a single layer of
the feedforward neural network. (b) Schematic of the proposed optical-to-optical activation
function circuit. The black and blue lines represent optical waveguides and electrical signal
pathways respectively. (c) Optical image of the fabricated activation function circuit with
Mach-Zehnder interferometer modulator.

top metal thermal phase shifter. Note that the low speed of the thermal phase shifter limits the
operational speed of the prototype device. This limited operational speed is not concerning since
the main purpose of this experiment is to demonstrate the capabilities of the proposed circuit to
generate nonlinear activation functions. Fabricating the proposed circuit in technologies that
provide high-speed intensity modulation, such as silicon photonics, can provide fast operational
speed [21-23]. The 1% tapped out port of the DC and the cross-port of the MZI are routed to the
edge of the die for edge coupling, while the unused ports are terminated by small spirals, which
scatter light due to the small bend radius of the spirals and prevent signal reflection.Fig. 2 shows
the measured MZI output for various applied voltages to the phase shifter. The thermal phase
shifter requires 12.8V for a w-phase shift and MZI cross-port shows an extinction ratio larger
than 40 dB. The insertion loss of the device excluding two 3.25 dB fiber-to-waveguide coupling
loss is around 1 dB.

The phase shift in a high-speed intensity modulator typically follows the applied modulating
voltage linearly as in Eq. (3). However, thermal phase shifters induce a phase shift proportional
to the square of the applied modulating voltage given by

2
Vin
Adthermal = 7 (V_ﬂ) . (5)
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Fig. 2. The output of the MZI for various voltages applied to the phase shift for 0)dBm input
power to the directional coupler. The blue line shows the output power of the MZI in dBm,
and the red line shows the corresponding normalized MZI output.

3. Experimental results

This section details two sets of experiments demonstrating the capabilities of the proposed
activation function circuit. Figure 3(a) depicts the measurement setup, while Figs. 3(b) and 3(c)
present the block diagram of the two measurement setups. In the first experiment, the tapped out
power is converted to a voltage signal and amplified by an optical receiver circuit and directly
used to modulate the thermal phase shifter [Fig. 3(b)]. This setup implements a limited number
of activation functions. In the second setup, the direct controller is replaced by a re-configurable
lookup table that generates arbitrary nonlinear activation functions. The microcontroller in
Fig. 3(c) implements the lookup table.
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Fig. 3. (a) A photo of the measurement setup, (b) the block diagram of the measurement
setup with direct controller, (c) the block diagram of the measurement setup with the lookup
table.

To perform the experiments, we first beam a 1550 nm laser through a variable optical attenuator
(VOA). The VOA allows us to control the amplitude of the input optical signal. Next, the signal
is sent through a polarization controller. Integrated waveguides are polarization sensitive, so
the polarization controller is used to minimize the coupling loss. The signal is then sent to the
on-chip nonlinear activation function circuit through a fiber array. Finally, the activated signal
exits through the fiber array. An electrical probe card is used to control the on-chip thermal phase
shifter.
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3.1.  Direct controller

We first consider the direct controller experimental setup, as shown in Fig. 3(b), which routes
the 1% tapped out signal from the directional coupler to a 75 MHz Thorlabs photoreceiver
(PDB420C) with a conversion gain of 250K V/W. The maximum input power to the device is
limited to -8 dBm to ensure linear photoreceiver operation. The output of the photoreceiver [RX
in Fig. 3(b)] is amplified by an operational amplifier [OP-AMP in Fig. 3(a)] and is connected
to the thermal phase shifter on the top MZI arm. The opposite end of the thermal heater is
connected to a power supply for controlling the initial MZI bias. With this biasing configuration,
the effective modulating voltage equals the difference of the bias voltage and the tapped out
photo-generated voltage: V,, = Vg — V.

Figure 4 plots the normalized output power |f(z)|? as a function of normalized input power
|z|?> and compares it with the simulation result, at four different bias voltages applied to the
thermal phase shifter. In modeling the performance of the device, we assume that no nonlinear
signal conditioning was applied to the electrical signal pathway, i.e. Vg = GRar|z|*>. We observe
excellent agreement between the measured and simulated activation function response, as shown
in Fig. 4. The small difference between the measurements and simulation results could be due
to the nonlinear response of the photoreceiver. Figures 4(b), 4(c), and 4(d), corresponding to
Vi, = 12.8V, 14V, and 16V, exhibit a response which is similar to the ReLU activation function:
optical signal transmission is low for small input values and high for large input values. For
the bias of V,, = 14V and 16V, transmission at low input power values is slightly increased
compared to the response at V, = 12.8V. Unlike the ideal ReLU response, the activation at
Vi, = 14V and 16V is not entirely monotonic because transmission first goes to zero before
increasing [16]. The response shown in Fig. 4(a), corresponding to V}, = 0.0V, is quite different.
It demonstrates a saturation response in which the output is suppressed for higher input values
but enhanced for lower input values. As shown in Fig. 4, the bias voltage changes the activation
response. The same control circuitry which programs linear interferometer meshes can control
the activation response through the bias voltage. The resulting device is a programmable ONN
that can implement a range of activation functions.
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Fig. 4. The normalized output power (|f(z)|?) of nonlinear activation function circuit for
various the normalized input power (|z|2) at several bias point. In all of the figures, the
normalized output power is relative to the maximum achievable output power of the circuit,
which relates to minimum MZI attenuation.
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A fully integrated ONN in a high-speed photonic platform, such as silicon photonics [22,23]
would include on-chip high-speed modulators and detectors [24] to modulate and detect the
sequences of input vectors to the input layer of the ONN and output vectors of the output layer
of the ONN, respectively. The same high-speed detector and modulator elements could also
be integrated between the optical interference unit to provide the activation function circuit.
State of the art integrated transimpedance amplifiers operate at speeds comparable to the optical
modulator and detector rates, which are on the order of 50 - 100 GHz [25,26]. Therefore, the
proposed activation function circuit would not be a limiting factor in the speed of the ONN.

3.2. Lookup table controller

We now consider the lookup table controller experimental setup, which uses a voltage lookup
table to implement the nonlinear electrical signal transformation, H. Specifically, the lookup
table maps the tapped out photogenerated current to a modulating voltage applied to the MZI
phase shifter. To produce the lookup table, two traces of MZI normalized output as a function of
applied voltage to the phase shifter and photogenerated current as a function of optical input
power Pj, are used. We linearly combine these two traces to produce a 2-dimensional map of
the optical output power of the activation function circuit as a function of input power to the
circuit (Pj,) and normalized output of MZI. The lookup table is determined by overlaying the
target activation function on the map; it is then implemented by a microcontroller. Figure 3(c)
shows the block diagram of the test setup with a lookup table controller. The 1% tapped output
of the DC is connected to a photodetector with a responsivity R of 1 A/W. The photogenerated
current of the photodetector is measured by a B&K Precision 393 ammeter. As expected, the
measured current is proportional to the optical input power I,g = R Pj,. The digital output of
the ammeter is sent to a microcontroller to specify the modulating voltage for controlling the
phase shifter. The voltage of the phase shifter is set using a lookup table for a specific activation
function. Figures 5(a) and 5(b) demonstrate two activation function of sigmoid and modReLU
[27] overlaid on the 2D power throughput map of the activation function circuit, respectively.
Figures 5(c) and 5(d) compare the target sigmoid function and target modRe LU function with
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Fig. 5. (a) Target sigmoid function overlaid on the 2D power throughput map of the
nonlinear activation function, (b) target modReLU function overlaid on the 2D power
throughput map of the nonlinear activation function, (c) measurement result compared its
target sigmoid function, (d) measurement result compared to its target modRe LU function.
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their measurement result respectively. Both measured responses agree very well with the target
functions.

Using the lookup table to control the activation response provides a tool to heuristically
select an activation function response or to directly optimize the activation function using a
training routine. This realization of a controllable optical-to-optical nonlinearity allows ONNs
to be applied to a broader classes of machine learning tasks [28]. However, implementing the
lookup table on a microcontroller limits the operation speed of the activation function circuit
to sub-GHz range. For a specific ONN application, one can use a moderate-speed flexible
lookup table implemented on a microcontroller or field-programmable gate array to optimize the
activation function. The associated transfer function can then be related to the optimized lookup
table, and a piecewise linear approximation can synthesize the optimized transfer function. In a
high-speed (GHz) implementation, the circuitry of the piecewise linear function can consist of an
application-specific integrated circuit in a high-speed analog/RF circuit platform. A number of
technologies with high transit frequencies can be utilized for this purpose. Examples include
SiGe BiCMOS, i.e. combination of bipolar and complementary metal-oxide—semiconductor
(CMOS) technology, III-V technologies, and advanced CMOS technologies provide high-speed
platforms for implementing over 50 GHz bandwidth analog/RF circuits [25,26,29].

4. Machine learning tasks

In this section, we numerically characterize the performance of the activation function on the
benchmark machine learning task of classifying images from the MNIST dataset, which consists of
60,000 images of handwritten digits ranging from 0 to 9. The ONN setup is shown schematically
in Fig. 6(a), and consists of a sequence of linear layers, corresponding to interferometer meshes
[4], and nonlinear activation layers. The last layer is a drop layer that reduces the vector to a
length of 10 elements, suitable for one-hot detection across the 10 digit classes. After the drop
layer, the optical intensity is detected and passed through a softmax function. As in Ref. [16],
before entering the ONN, the images undergo a pre-processing stage consisting of a Fourier
transform step and a cropping step. These operations reduce the total size of the input data from
28 x 28 = 784 real-space pixels to 16 complex Fourier coefficients. We found that an ONN
with 16 inputs resulted in reasonably high classification performance, but was still feasible to
simulate and train numerically. In practice, the Fourier transformation and cropping steps could
be experimentally achieved completely passively with a Fourier optics setup [30].

We now compare the classification performance of the ONN on the digit recognition task
for several nonlinearity settings and quantify the optical transmission through the ONN. Fig-
ures 6(b)—6(c) show the classification accuracy of the ONN on the test dataset and the optical
transmission through the ONN as a function of the network depth. The transmission shown in
Fig. 6(c) is calculated as the mean over the transmission for all samples in the training dataset.
These simulations were performed using TensorFlow [31] and the neurophox ONN mod-
eling framework [32,33], which implements a physical model of the ONN by parameterizing
the linear layers in terms of MZI interferometers and phase shifters and complex-valued field
quantities. The ONN is trained using the Adam optimizer [34] for 400 epochs with a batch size
of 512.

In our comparison, we consider several variants of the ONN in Fig. 6(a): a linear ONN with
no activation, an electro-optic activation that uses settings similar to those in Ref. [16], and an
electro-optic activation implementing the complex modReLU function [27] corresponding to
the lookup table implementation measured from our prototype in Fig. 5. Unsurprisingly, we
observe in Fig. 6 that the linear ONN does not benefit from an increase in the network depth
because a sequence of linear transformations is also a linear transformation. In other words,
additional linear layers without intermediate nonlinearities do not meaningfully increase the
learning capacity of the ONN. The linear ONN achieves a test accuracy of 82% and, because
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Fig. 6. (a) Schematic of the optical neural network configuration for classifying handwritten
digits from the MNIST dataset. The 28x28 pixel images are first Fourier transformed and
cropped before being fed into the ONN. (b) Classification accuracy achieved for various
ONN configurations. (c¢) Optical signal transmission through the neural network, averaged
over all samples in the training dataset.

we have assumed lossless interferometer meshes, it exhibits ideal optical transmission which is
independent of the number of layers.

In contrast, the electro-optic activation function with settings similar to those used in Ref. [16]
increases its classification accuracy substantially with additional layers. This ONN achieves a
test accuracy of 93% with three layers. However, this relatively high accuracy comes with a high
cost in terms of optical signal attenuation. Although nonlinear amplitude responses inherently
involve signal attenuation, this activation configuration results in an optical transmission of -144
dB for the network with three layers. In practice, such loss could be prohibitively high due to the
finite dynamic range of optical detectors at the output of the ONN.

However, by configuring the electro-optic activation lookup table to synthesize the modReLU
function, the optical transmission can be increased significantly. We observe that the modReLU
response results in an optical transmission of -4 dB for the 3 layer network, which is 140 dB larger
than the transmission through the network with the electro-optic activation settings from Ref.
[16]. However, we note that the ONN with the modReLU activation does have a classification
accuracy that is reduced by 5% from the activation in Ref. [16]. However, the ONN with
the modReLU activation still outperforms the linear ONN. The performance of the ONN with
the modReLU activation could potentially be improved by adjusting (or directly training) the
activation threshold. We emphasize that the ability to synthesize the modReLU activation is a
unique capability of this electro-optic activation function architecture and is an important degree
of freedom over all-optical nonlinearities. We note that constraining the ONN to N = 16 Fourier
coefficients from each input image does somewhat limit accuracy of the MNIST task. Other
works have demonstrated that increasing N can lead to an increased classification accuracy in
ONN s [35], approaching the performance of conventional artificial neural networks.

5. Conclusion

In this work, we have presented the experimental results of an on-chip optical-to-optical nonlinear
activation function circuit fabricated on a SiN waveguide technology platform. The capabilities
of the circuit were demonstrated through two experimental setups. In the first experiment, only
the nonlinear response of the Mach-Zehnder modulator was used to generate the nonlinear
activation function. In this setup, a limited set of activation functions could be realized by
varying the bias of the phase shifter. In the second experiment, a lookup table was used to apply a
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nonlinear modulation signal to the phase shifter which allowed realization of arbitrary nonlinear
responses. While the prototype demonstrated in this work relied on thermo-optic modulation, the
activation architecture can be readily implemented using much faster modulation mechanisms
that are widely used in GHz-rate optical communications [21-23]. Faster modulation will allow
an ONN using this activation to achieve higher computational speeds and lower latencies than
conventional digital processors.

Using numerical ONN simulations, we demonstrated that the measured activation functions
improve the accuracy of optical neural networks on the benchmark task of classifying images
from the MNIST dataset. Our simulations revealed that the ability to generate arbitrary nonlinear
optical transfer functions provides a powerful tool to achieve high performance while maintaining
a low optical transmission loss. Compared to a linear ONN with depth of three layers, using
the activation from Ref. [16] improves the accuracy of the classification task by more than 11%
but at the cost of over 140 dB optical transmission loss. However, by configuring the lookup
table to generate the modReLU activation [27] instead of the response from Ref. [16], the
optical transmission is improved by more than 140 dB with only 5% degradation in classification
accuracy. The ability of this activation to tailor the loss of optical nonlinearities may be very
useful for much deeper neural networks where signal attenuation is a significant concern. Future
work could consider the effect of including optical loss from the activation as a penalty term
into the objective function during training to balance inference performance and the output
signal-to-noise ratio.
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