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Abstract—We introduce an electro-optic hardware platform for
nonlinear activation functions in optical neural networks. The
optical-to-optical nonlinearity operates by converting a small por-
tion of the input optical signal into an analog electric signal, which
is used to intensity -modulate the original optical signal with no
reduction in processing speed. Our scheme allows for complete
nonlinear ON–OFF contrast in transmission at relatively low optical
power thresholds and eliminates the requirement of having addi-
tional optical sources between each of the layers of the network
Moreover, the activation function is reconfigurable via electrical
bias, allowing it to be programmed or trained to synthesize a
variety of nonlinear responses. Using numerical simulations, we
demonstrate that this activation function significantly improves
the expressiveness of optical neural networks, allowing them to
perform well on two benchmark machine learning tasks: learning
a multi-input exclusive-OR (XOR) logic function and classification
of images of handwritten numbers from the MNIST dataset. The
addition of the nonlinear activation function improves test accuracy
on the MNIST task from 85% to 94%.

Index Terms—Optical neural networks, feedforward neural net-
works, neuromorphic computing, machine learning, electro-optic
modulators, photodetectors, nonlinear optics, intensity modula-
tion, phase modulation.

I. INTRODUCTION

IN RECENT years, there has been significant interest in alter-
native computing platforms specialized for high performance

and efficiency on machine learning tasks. For example, graphical
processing units (GPUs) have demonstrated peak performance
with trillions of floating point operations per second (TFLOPS)
when performing matrix multiplication, which is several orders
of magnitude larger than general-purpose digital processors such
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as CPUs [1]. Moreover, analog computing has been explored
for achieving high performance because it is not limited by
the bottlenecks of sequential instruction execution and memory
access [2]–[6].

Optical hardware platforms are particularly appealing for
computing and signal processing due to their ultra-large signal
bandwidths, low latencies, and reconfigurability [7]–[9]. They
have also gathered significant interest in machine learning ap-
plications, such as artificial neural networks (ANNs). Nearly
three decades ago, the first optical neural networks (ONNs)
were proposed based on free-space optical lens and holography
setups [10], [11]. More recently, ONNs have been implemented
in chip-integrated photonic platforms [12] using programmable
waveguide interferometer meshes which perform matrix-vector
multiplications [13]. In theory, the performance of such systems
is competitive with digital computing platforms because they
may perform matrix-vector multiplications in constant time with
respect to the matrix dimension. In contrast, matrix-vector multi-
plication has a quadratic time complexity on a digital processor.
Other approaches to performing matrix-vector multiplications
in chip-integrated ONNs, such as microring weight banks and
photodiodes, have also been proposed [14].

Nonlinear activation functions play a key role in ANNs by en-
abling them to learn complex mappings between their inputs and
outputs. Whereas digital processors have the expressiveness to
trivially apply nonlinearities such as the widely-usedsigmoid,
ReLU, and tanh functions, the realization of nonlinearities in
optical hardware platforms is more challenging. One reason for
this is that optical nonlinearities are relatively weak, necessitat-
ing a combination of large interaction lengths and high signal
powers, which impose lower bounds on the physical footprint
and the energy consumption, respectively. Although it is possible
to resonantly enhance optical nonlinearities, this comes with
an unavoidable trade-off in reducing the operating bandwidth,
thereby limiting the information processing capacity of an ONN.
Additionally, maintaining uniform resonant responses across
many elements of an optical circuit necessitates additional con-
trol circuitry for calibrating each element [15].

A more fundamental limitation of optical nonlinearities is
that their responses tend to be fixed during device fabrication.
This limited tunability of the nonlinear optical response prevents
an ONN from being reprogrammed to realize different forms
of nonlinear activation functions, which may be important for
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tailoring ONNs for different machine learning tasks. Similarly,
a fixed nonlinear response may also limit the performance of
very deep ONNs with many layers of activation functions since
the optical signal power drops below the activation threshold,
where nonlinearity is strongest, in later layers due to loss in
previous layers. For example, with optical saturable absorption
from 2D materials in waveguides, the activation threshold is on
the order of 1–10 mW [16]–[18], meaning that the strength of
the nonlinearity in each subsequent layer will be successively
weaker as the transmitted power falls below the threshold.

In light of these challenges, the ONN demonstrated in Ref.
[12] implemented its activation functions by detecting each
optical signal, feeding them through a conventional digital com-
puter to apply the nonlinearity, and then modulating new optical
signals for the subsequent layer. Although this approach benefits
from the flexibility of digital signal processing, conventional
processors have a limited number of input and output channels,
which make it challenging to scale this approach to very large
matrix dimensions, which corresponds to a large number of
optical inputs. Moreover, digitally applied nonlinearities add
latency from the analog-to-digital conversion process and con-
strain the computational speed of the neural network to the same
GHz-scale clock rates which ONNs seek to overcome. Thus,
a hardware nonlinear optical activation, which doesn’t require
repeated bidirectional optical-electronic signal conversion, is
of fundamental interest for making integrated ONNs a viable
machine learning platform.

In this article, we propose an electro-optic architecture for
synthesizing optical-to-optical nonlinearities which alleviates
the issues discussed above. Our architecture features complete
on-off contrast in signal transmission, a variety of nonlinear
response curves, and a low activation threshold. Rather than
using traditional optical nonlinearities, our scheme operates by
measuring a small portion of the incoming optical signal power
and using electro-optic modulators to modulate the original
optical signal, without any reduction in operating bandwidth
or computational speed. Additionally, our scheme allows for
the possibility of performing additional nonlinear transforma-
tions on the signal using analog electrical components. Related
electro-optical architectures for generating optical nonlinearities
have been previously considered [19]–[21]. In this work, we
focus on the application of our architecture as an element-wise
activation in a feedforward ONN, but the synthesis of low-
threshold optical nonlinearities could be of broader interest to
optical computing and information processing.

The remainder of this paper is organized as follows. First,
we review the basic operating principles of ANNs and their
integrated optical implementations in waveguide interferom-
eter meshes. We then introduce our electro-optical activation
function architecture, showing that it can be reprogrammed to
synthesize a variety of nonlinear responses. Next, we discuss
the performance of an ONN using this architecture by analyzing
the scaling of power consumption, latency, processing speed,
and footprint. We then draw an analogy between our proposed
activation function and the optical Kerr effect. Finally, using
numerical simulations, we demonstrate that our architecture

Fig. 1. (a) Block diagram of a feedforward neural network of L layers. Each
layer consists of a Ŵi block representing a linear matrix which multiplies vector
inputs xi−1. The fi block in each layer represents an element-wise nonlinear
activation function operating on vectors zi to produce outputs xi. (b) Schematic
of the optical interferometer mesh implementation of a single layer of the
feedforward neural network. (c) Schematic of the proposed optical-to-optical
activation function which achieves a nonlinear response by converting a small
portion of the optical input, z into an electrical signal, and then intensity
modulating the remaining portion of the original optical signal as it passes
through an interferometer.

leads to improved performance on two different machine learn-
ing tasks: (1) learning an N-input exclusive OR (XOR) logic
function; (2) classifying images of handwritten numbers from
the MNIST dataset.

II. FEEDFORWARD OPTICAL NEURAL NETWORKS

In this section, we briefly review the basics of feedforward
artificial neural networks (ANNs) and describe their imple-
mentation in a reconfigurable optical circuit, as proposed in
Ref. [12]. As outlined in Fig. 1(a), an ANN is a function which
accepts an input vector, x0 and returns an output vector, xL.
This is accomplished in a layer-by-layer fashion, with each
layer consisting of a linear matrix-vector multiplication followed
by the application of an element-wise nonlinear function, or
activation, on the result. For a layer with index i, containing a
weight matrix Ŵi and activation function fi(·), its operation is
described mathematically as

xi = fi

(
Ŵi · xi−1

)
(1)

for i from 1 to L.
Before they are able to perform a given machine learning

task, ANNs must be trained. The training process is typically
accomplished by minimizing the prediction error of the ANN on
a set of training examples, which come in the form of input and
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target output pairs. For a given ANN, a loss function is defined
to quantify the difference between the target output and output
predicted by the network. During training, this loss function is
minimized with respect to tunable degrees of freedom, namely
the elements of the weight matrix Ŵi within each layer. In
general, although less common, it is also possible to train the
parameters of the activation functions [22].

Optical hardware implementations of ANNs have been pro-
posed in various forms over the past few decades. In this work,
we focus on a recent demonstration in which the linear opera-
tions are implemented using an integrated optical circuit [12].
In this scheme, the information being processed by the network,
xi, is encoded into the modal amplitudes of the waveguides
feeding the device and the matrix-vector multiplications are ac-
complished using meshes of integrated optical interferometers.
In this case, training the network requires finding the optimal
settings for the integrated optical phase shifters controlling the
inteferometers, which may be found using an analytical model
of the chip, or using in-situ backpropagation techniques [23].

In the next section, we present an approach for realizing the
activation function, fi(·), on-chip with a hybrid electro-optic
circuit feeding an inteferometer. In Fig. 1(b), we show how this
activation scheme fits into a single layer of an ONN and show
the specific form of the activation in Fig. 1(c). We also give
the specific mathematical form of this activation and analyze its
performance in practical operation.

III. NONLINEAR ACTIVATION FUNCTION ARCHITECTURE

In this section, we describe our proposed nonlinear activation
function architecture for optical neural networks, which imple-
ments an optical-to-optical nonlinearity by converting a small
portion of the optical input power into an electrical voltage.
The remaining portion of the original optical signal is phase-
and amplitude-modulated by this voltage as it passes through
an interferometer. For an input signal with amplitude z, the
resulting nonlinear optical activation function, f(z), is a result
of the responses of the interferometer under modulation as well
as the components in the electrical signal pathway.

A schematic of the architecture is shown in Fig. 1(c), where
black and blue lines represent optical waveguides and electrical
signal pathways, respectively. The input signal first enters a
directional coupler which routes a portion,α, of the input optical
power to a photodetector. The photodetector is the first element
of an optical-to-electrical conversion circuit, which is a standard
component of high-speed optical receivers for converting an
optical intensity into a voltage. In this work, we assume a
normalization of the optical signal such that the total power in the
input signal is given by |z|2. The optical-to-electrical conversion
process consists of the photodetector producing an electrical cur-
rent, Ipd = R · α|z|2, whereR is the photodetector responsivity,
and a transimpedance amplifying stage, characterized by a gain
G, converting this current into a voltage VG = G ·R · α|z|2.
The output voltage of the optical-to-electrical conversion circuit
then passes through a nonlinear signal conditioner with a transfer
function, H(·). This component allows for the application of
additional nonlinear functions to transform the voltage signal.

Finally, the conditioned voltage signal,H(VG) is combined with
a static bias voltage, Vb to induce a phase shift of

Δφ =
π

Vπ

[
Vb +H

(
GRα|z|2)] (2)

for the optical signal routed through the lower port of the
directional coupler. The parameter Vπ represents the voltage
required to induce a phase shift of π in the phase mod-
ulator. This phase shift, defined by Eq. 2, is a nonlinear
self-phase modulation because it depends on the input signal
intensity.

An optical delay line between the directional coupler and the
Mach-Zehnder interferometer (MZI) is used to match the signal
propagation delays in the optical and electrical pathways. This
ensures that the nonlinear self-phase modulation defined by Eq.
(2) is applied at the same time that the optical signal which
generated it passes through the phase modulator. For the circuit
shown in Fig. 1(c), the optical delay is τopt = τoe + τnl + τrc,
accounting for the contributions from the group delay of the
optical-to-electrical conversion stage (τoe), the delay associated
with the nonlinear signal conditioner (τnl), and the RC time
constant of the phase modulator (τrc).

The nonlinear self-phase modulation achieved by the electric
circuit is converted into a nonlinear amplitude response by the
MZI, which has a transmission depending on Δφ as

tMZI = j exp

(
−j

Δφ

2

)
cos

(
Δφ

2

)
. (3)

Depending on the configuration of the bias, Vb, a larger input
optical signal amplitude causes either more or less power to
be diverted away from the output port, resulting in a nonlinear
self-intensity modulation. Combining the expression for the
nonlinear self-phase modulation, given by Eq. 2, with the MZI
transmission, given by Eq. 3, the mathematical form of the
activation function can be written explicitly as

f(z) = j
√
1− α exp

(
−j

1

2

[
φb + π

H
(
GRα|z|2)
Vπ

])

· cos
(
1

2

[
φb + π

H
(
GRα|z|2)
Vπ

])
z, (4)

where the contribution to the phase shift from the bias voltage
is

φb = π
Vb

Vπ
. (5)

For the remainder of this work, we focus on the case where no
nonlinear signal conditioning is applied to the electrical signal
pathway, i.e. H(VG) = VG. However, even with this simplifi-
cation the activation function still exhibits a highly nonlinear
response. We also neglect saturating effects in the OE conversion
stage which can occur in either the photodetector or the amplifier.
However, in practice, the nonlinear optical-to-optical transfer
function could take advantage of these saturating effects.
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With the above simplifications, a more compact expression
for the activation function response is

f(z) = j
√
1− α exp

(
−j

[
gφ |z|2

2
+

φb

2

])

· cos
(
gφ |z|2

2
+

φb

2

)
z, (6)

where the phase gain parameter is defined as

gφ = π
αGR

Vπ
. (7)

Equation 7 indicates that the amount of phase shift per unit
input signal power can be increased via the gain and photodiode
responsivity, or by converting a larger fraction of the optical
power to the electrical domain. However, tapping out a larger
fraction optical power also results in a larger linear loss, which
is undesirable.

The electrical biasing of the activation phase shifter, repre-
sented by Vb, is an important degree of freedom for determining
its nonlinear response. We consider a representative selection,
consisting of four different responses, in Fig. 2. The left column
of Fig. 2 plots the output signal amplitude as a function of the
input signal amplitude i.e. |f(z)| in Eq. 6, while the right column
plots the transmission coefficient i.e. |f(z)|2/|z|2, a quantity
which is more commonly used in optics than machine learning.
The first two rows of Fig. 2, corresponding to φb = 1.0π and
0.85π, exhibit a response which is comparable to the ReLU
activation function: transmission is low for small input values
and high for large input values. For the bias of φb = 0.85π,
transmission at low input values is slightly increased with re-
spect to the response where φb = 1.00π. Unlike the ideal ReLU
response, the activation at φb = 0.85π is not entirely monotonic
because transmission first goes to zero before increasing. On the
other hand, the responses shown in the bottom two rows of Fig. 2,
corresponding toφb = 0.0π and0.50π, are quite different. These
configurations demonstrate a saturating response in which the
output is suppressed for higher input values but enhanced for
lower input values. For all of the responses shown in Fig. 2, we
have assumed α = 0.1 which limits the maximum transmission
to 1− α = 0.9.

A benefit of having electrical control over the activation
response is that, in principle, its electrical bias can be connected
to the same control circuitry which programs the linear interfer-
ometer meshes. In doing so, a single ONN hardware unit can
then be reprogrammed to synthesize many different activation
function responses. This opens up the possibility of heuristically
selecting an activation function response, or directly optimizing
the the activation bias using a training algorithm. This realization
of a flexible optical-to-optical nonlinearity can allow ONNs to
be applied to much broader classes of machine learning tasks.

We note that Fig. 2 shows only the amplitude response of the
activation function. In fact, all of these responses also introduce a
nonlinear self-phase modulation to the output signal. If desired,
this nonlinear self-phase modulation can be suppressed using a
push-pull interferometer configuration in which the generated

Fig. 2. Activation function output amplitude (blue lines) and activation func-
tion transmission (green lines) as a function of input signal amplitude. The input
and output are normalized to the phase gain parameter, gφ. Panel pairs (a), (b)
and (c), (d) correspond to a ReLU-like response, with a suppressed transmission
for inputs with small amplitude and high transmission for inputs with large
amplitude. Panel pairs (e), (f) and (g), (h) correspond to a clipped response, with
high transmission for inputs with small amplitude and reduced transmission for
inputs with larger amplitude.

phase shift, Δφ, is divided and applied with opposite sign to the
top and bottom arms.

IV. PERFORMANCE AND SCALABILITY

In this section, we discuss the performance of an integrated
ONN which uses meshes of integrated optical interferometers
to perform matrix-vector multiplications and the electro-optic
activation function, as shown in Fig. 1(b),(c). Here, we focus
on characterizing how the power consumption, computational
latency, physical footprint, and computational speed of the ONN
scale with respect to the number of network layers, L and the
dimension of the input vector, N , assuming square matrices.
The system parameters used for this analysis are summarized in
Table I and the figures of merit are summarized in Table II.

A. Power Consumption

The power consumption of the ONN, as shown in Fig. 1(b),
consists of contributions from (1) the programmable phase
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TABLE I
SUMMARY OF PARAMETER VALUES

shifters inside the interferometer mesh, (2) the optical source
supplying the input vectors, x0, and (3) the active components
of the activation function such as the amplifier and photodetector.
In principle, the contribution from (1) can be made negligible by
using phase change materials or ultra-low power MEMS phase
shifters. Therefore, in this section we focus only on contributions
(2) and (3) which pertain to the activation function.

To quantify the power consumption, we first consider the
minimum input optical power to a single activation that triggers
a nonlinear response. We refer to this as the activation function
threshold, which is mathematically defined as

Pth =
Δφ|δT=0.5

gφ
=

Vπ

παGR
·Δφ|δT=0.5, (8)

where Δφ|δT=0.5 is the is phase shift necessary to generate
a 50% change in the power transmission with respect to the
transmission with null input for a given φb. This threshold
corresponds to z

√
gφ/π = 0.73 in Fig. 2(b), to z

√
gφ/π = 0.85

in Fig. 2(d), to z
√
gφ/π = 0.73 in Fig. 2(f), and to

z
√
gφ/π = 0.70 in Fig. 2(h). In general, a lower activation

threshold will result in a lower optical power required at the
ONN input, |x0|2. According to Eq. (8), the activation threshold
can be reduced via a small Vπ and a large optical-to-electrical
conversion gain, GR ∼ 1.0 V/mW. The relationship between
G and Vπ for activation thresholds of 0.1 mW, 1.0 mW, and
10.0 mW is shown in Fig. 3 for a fixedR= 1 A/W. Additionally,
in Fig. 3 we conservatively assumeφb = π which has the highest
threshold of the activation function biases shown in Fig. 2.

If we take the lowest activation threshold of 0.1 mW in
Fig. 3, the optical source to the ONN would then need to
supply N · 0.1 mW of optical power. The power consumption
of integrated optical receiver amplifiers varies considerably,
ranging from as low as 10 mW to as high as 150 mW [24]–[26],
depending on a variety of factors which are beyond the scope
of this article. Therefore, a conservative estimate of the power
consumption from the optical-to-electrical conversion circuits in
all activations is L ·N · 100 mW. For an ONN with N = 100,
the power consumption per layer from the activation function
would be 10 W and would require a total optical input power
of N · Pth = 100 · 0.1 mW = 10 mW. Thus, the total power
consumption of the ONN is dominated by the activation function
electronics.

B. Latency

For the feedforward neural network architecture shown in
Fig. 1(a), the latency is defined by the elapsed time between
supplying an input vector, x0 and detecting its corresponding
prediction vector, xL. In an integrated ONN, as implemented
in Fig. 1(b), this delay is simply the travel time for an optical
pulse through all L-layers. Following Ref. [12], the propagation
distance in a square interferometer mesh is DW = N ·DMZI,
where DMZI is the length of each MZI within the mesh. In
the nonlinear activation layer, the propagation length will be
dominated by the delay line required to match the optical and
electrical delays, and is given by

Df = (τoe + τnl + τrc) · vg, (9)

where the group velocity vg = c0/neff is the speed of optical
pulses in the waveguide. Therefore,

latency = L ·N ·DMZI · vg−1

︸ ︷︷ ︸
Interferometer mesh

+L · (τoe + τnl + τrc)︸ ︷︷ ︸
Activation function

. (10)

Equation 10 indicates that the latency contribution from the
interferometer mesh scales with the product LN , which is the
same scaling as predicted in Ref. [12]. On the other hand,
the activation function adds to the latency independently of
N because each activation circuit is applied in parallel to all
N -vector elements.

For concreteness, we assumeDMZI = 100 μm and neff = 3.5.
Following our assumption in the previous section of using no
nonlinear electrical signal conditioner in the activation function,
τnl = 0 ps. Typical group delays for integrated transimpedance
amplifiers used in optical receivers can range from τoe ≈ 10
to 100 ps. Moreover, assuming an RC-limited phase modulator
speed of 50 GHz yields τrc ≈ 20 ps. Therefore, if we assume
a conservative value of τoe = 100 ps, a network dimension of
N ≈ 100 would have a latency of 237 ps per layer, with equal
contributions from the mesh and the activation function. For a ten
layer network (L = 10) the total latency would be approximately
2.4 ns, still orders of magnitude lower than the latency typically
associated with GPUs.

C. Physical Footprint

The physical footprint of the ONN consists of the space taken
up by both the linear interferometer mesh and the optical and
electrical components of the activation function. Neglecting the
electrical control lines for tuning each MZI, the total footprint
of the ONN is

A = L ·N2 ·AMZI︸ ︷︷ ︸
Interferometer mesh

+ L ·N ·Af︸ ︷︷ ︸
Activation function

, (11)

where AMZI = DMZI ·HMZI is the area of a single MZI element
in the mesh and Af = Df ·Hf is the area of a single activation
function.

In the direction of propagation, Df is dominated by the
waveguide optical delay line required to match the delay of the
electrical signal pathway. Based on the previous discussion of
the activation function’s latency, τopt = 120 ps corresponds to a
total waveguide length of Df ≈ 1 cm. For simplicity, we assume
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TABLE II
SUMMARY OF PER-LAYER OPTICAL NEURAL NETWORK PERFORMANCE USING THE ELECTRO-OPTIC ACTIVATION FUNCTION

∗Assuming no power consumption in the interferometer mesh phase shifters.

Fig. 3. Contours of constant activation threshold as a function of the optical-
to-electrical gain and the modulator Vπ of the activation function shown in
Fig. 1(c) with a photodetector responsivity R = 1.0 A/W.

this delay is achieved using a straight waveguide, which results
in a large footprint but with optical losses that can be very low.
For example, in silicon waveguides losses below 0.5 dB/cm have
been experimentally demonstrated [27]. In principle, incorporat-
ing waveguide bends or resonant optical elements could signif-
icantly reduce the activation function’s footprint. For example,
coupled micro ring arrays have experimentally achieved group
delays of 135 ps over a bandwidth of 10 GHz in a 0.03 mm ×
0.25 mm footprint [28].

Transverse to the direction of propagation, the activation func-
tion footprint will be dominated by the electronic components
of the optical-to-electrical conversion circuit. In principle, com-
pact waveguide photodetectors and modulators can be utilized.
However, the components of the transimpedance amplifier may
be challenging to integrate in the area available between neigh-
boring output waveguides of the interferometer mesh. One possi-
bility towards achieving a fully integrated opto-electronic ONN
would be to use so-called amplifier-free optical receivers [26],
where ultra-low capacitance detectors provide high-speed opto-
electronic conversion. Similarly to the experimental demonstra-
tion in Ref. [29], the amplifier-free receiver could be integrated
directly with a high efficiency (e.g. effectively a low Vπ) electro-
optic modulator. Compact electro-absorption modulators could
also be utilized. In addition to achieving a compact footprint,

operating without an amplifier would also result in an order of
magnitude reduction in both power consumption and latency,
with the later reducing the required length of the optical delay
line and thus the footprint.

For the purposes of our analysis, we assume no integration
of the electronic transimpedance amplifier and, therefore, that
the on-chip components of the activation function fit within the
height of each interferometer mesh row, Df ≤ DMZI = 60 μm.
Under this assumption and following the scaling in Eq. 11, the
total footprint of a single ONN layer of dimension N = 10
would be 11.0 mm × 0.6 mm. Interestingly, following the
latency discussion in the previous section, a single ONN layer
of dimension N = 100 would have a footprint of 20.0 mm ×
6.0 mm, with equal contribution from the activation function
and from the mesh.

D. Speed

The speed, or computational capacity, of the ONN, as shown
in Fig. 1(a), is determined by the number of input vectors,
x0 that can be processed per unit time. Here, we argue that
although our activation function is not fully optical, it results in
no speed degradation compared to a linear ONN consisting of
only interferometer meshes.

The reason for this is that a fully integrated ONN would
also include high-speed modulators and detectors on-chip to
perform fast modulation and detection of sequences of x0

vectors and xL vectors, respectively. We therefore argue that
the same high-speed detector and modulator elements could
also be integrated between the linear network layers to pro-
vide the optical-electrical and electrical-optical transduction for
the activation function. State of the art integrated transimpedance
amplifiers can already operate at speeds comparable to the
optical modulator and detector rates, which are on the order of
50–100 GHz [24], [30], and thus would not be a limiting factor
in the speed of our architecture.

To perform a matrix-vector multiplication on a conventional
CPU requires N2 multiply-accumulate (MAC) operations, each
consisting of a single multiplication and a single addition.
Therefore, assuming a photodetector and modulator rate of 10
GHz means that an ONN can effectively perform N2 · L · 1010
MAC/sec. This means that one layer of an ONN with dimension
N = 10 would effectively perform 1012 MAC/sec. Increasing
the input dimension to N = 100 would then scale the perfor-
mance of the ONN to 1014 MAC/sec per layer. This is two orders
of magnitude greater than the peak performance obtainable with



WILLIAMSON et al.: REPROGRAMMABLE ELECTRO-OPTIC NONLINEAR ACTIVATION FUNCTIONS FOR OPTICAL NEURAL NETWORKS 7700412

modern GPUs, which typically have performance on the order of
1012 floating point operations/sec (FLOPS). Because the power
consumption of the ONN scales as LN (assuming passive phase
shifters in the mesh) and the speed scales as LN2, the energy
per operation is minimized for largeN (Table II). Thus, for large
ONNs the power consumption associated with the electro-optic
conversion in the activation function can be amortized over the
parallelized operation of the linear mesh.

We note that the activation function circuit shown in Fig. 1(c)
can be modified to remove the matched optical delay line
by using very long optical pulses. This modification may be
advantageous for reducing the footprint of the activation and
would result in τopt � τele. However, this results in a reduction
of the ONN speed, which would then be limited by the com-
bined activation delay of all L nonlinear layers in the network,
∼ (L · τele)

−1.

V. COMPARISON WITH THE KERR EFFECT

All-optical nonlinearities such as bistability and saturable ab-
sorption have been previously considered as potential activation
functions in ONNs [10], [31]. An alternative implementation of
the activation function in Fig. 1(c) could consist of a nonlinear
MZI, with one of its arms having a material with Kerr nonlinear
optical response. The Kerr effect is a third-order optical nonlin-
earity which generates a change in the refractive index, and thus
a nonlinear phase shift, which is proportional to the input pulse
intensity. In this section we compare the electro-optic activation
function introduced in the previous section [Fig. 1(c)] to such an
alternative all-optical activation function using the Kerr effect,
highlighting how the electro-optic activation can achieve a lower
activation threshold.

Unlike the electro-optic activation function, the Kerr effect is
lossless and has no latency because it arises from a nonlinear
material response, rather than a feedforward circuit. A standard
figure of merit for quantifying the strength of the Kerr effect
in a waveguide is through the amount of nonlinear phase shift
generated per unit input power per unit waveguide length. This
is given mathematically by the expression

ΓKerr =
2π

λ0

n2

A
, (12)

where n2 is the nonlinear refractive index of the material and
A is the effective mode area. ΓKerr ranges from 100 (W·m)−1

in chalcogenide to 350 (W·m)−1 in silicon [32]. An equivalent
figure of merit for the electro-optic feedforward scheme can be
mathematically defined as

ΓEO = π
αRG

VπL
, (13)

where VπL is the phase modulator figure of merit. The figures
of merit described in Eqs. (12)–(13) can be represented as an
activation threshold (Eq. 8) via the relationshipPth = Δφ|δT=0.5

ΓL ,
for a given waveguide length, L where the electro-optic phase
shift or nonlinear Kerr effect take place.

A comparison of Eq. 12 and Eq. 13 indicates that while the
strength of the Kerr effect is largely fixed by waveguide design
and material choice, the electro-optic scheme has several degrees

Fig. 4. Nonlinear parameter ΓEO for the electro-optic activation as a function
of (a) gain,G, forα=0.50, 0.10, and 0.01 and (b) modulatorVπL. The nonlinear
parameter associated with the optical Kerr effect, ΓKerr in a Silicon waveguide
of cross sectional area A = 0.05 μm2 corresponds to the black dotted line.

of freedom which allow it to potentially achieve a stronger
nonlinear response. The first design parameter is the amount of
power tapped off to the photodetector, which can be increased
to generate a larger voltage at the phase modulator. However,
increasing α also increases the linear signal loss through the
activation which does not contribute to the nonlinear mapping
between the input and output of the ONN. Therefore,α should be
minimized as long as the optical power routed to the photode-
tector is large enough to be above the noise equivalent power
level.

On the other hand, the product RG determines the conversion
efficiency of the detected optical power into an electrical voltage.
Fig. 4(a) compares the nonlinearity strength of the electro-optic
activation (blue lines) to that of an implementation using the
Kerr effect in silicon (black dashed line) for several values of α,
as a function ofG. The responsivity is fixed atR = 1.0A/W. We
observe that tapping out 10% of the optical power requires a gain
of 20 dBΩ to achieve a nonlinear phase shift equivalent threshold
to that of a silicon waveguide where A = 0.05 μm2 for the
same amount of input optical power. Tapping out only 1% of the
optical power requires an additional 10 dBΩ of gain to maintain
this equivalence. We note that the gain range considered in
Fig. 4(a) is well within the regime of what has been demonstrated
in integrated transimpedance amplifiers for optical receivers
[24]–[26]. In fact, many of these systems have demonstrated
much higher gain. In Fig. 4(a), the phase modulator VπL was
fixed at 20 V·mm. However, because a lower VπL translates
into an increased phase shift for a given applied voltage, this
parameter can also be used to enhance the nonlinearity. Fig. 4(b)
demonstrates the effect of changing the VπL for several values



7700412 IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 26, NO. 1, JANUARY/FEBRUARY 2020

of of G, again, with a fixed responsivity R = 1.0 A/W. This
demonstrates that with a reasonable level of gain and phase
modulator performance, the electro-optic activation function can
trade off an increase in latency for a significantly lower optical
activation threshold than the Kerr effect.

VI. MACHINE LEARNING TASKS

In this section, we apply the electro-optic activation func-
tion introduced above to several machine learning tasks. In
Section VI-A, we simulate training an ONN to implement an
exclusive-OR (XOR) logical operation. The network is modeled
using neuroptica [33], a custom ONN simulator written in
Python, which trains the simulated networks only from physi-
cally measurable field quantities using the on-chip backpropa-
gation algorithm introduced in Ref. [23]. In Section VI-B, we
consider the more complex task of using an ONN to classify
handwritten digits from the Modified NIST (MNIST) dataset,
which we model using the neurophox [34], [35] package and
tensorflow [36], which computes gradients using automatic
differentiation. In both cases, we model the values in the network
as complex-valued quantities and represent the interferometer
meshes as unitary matrices parameterized by phase shifters.

A. Exclusive-OR Logic Function

An exclusive-OR (XOR) is a logic function which takes two
inputs and produces a single output. The output is high if only
one of the two inputs is high, and low for all other possible input
combinations. In this example, we consider a multi-input XOR
which takes N input values, given by x1 . . . xN , and produces
a single output value, y. The input-output relationship of the
multi-input XOR function is a generalization of the two-input
XOR. For example, defining logical high and low values as 1 and
0, respectively, a four-input XOR has an output table indicated
the desired values in Fig. 5(b). We select this task for the ONN
to learn because it requires a non-trivial level of nonlinearity,
meaning that it could not be implemented in an ONN consisting
of only linear interferometer meshes.

The architecture of the ONN used to learn the XOR is shown
schematically in Fig. 5(a). The network consists ofL layers, with
each layer constructed from an N ×N unitary interferometer
mesh followed by an array of N parallel electro-optic activation
functions, with each element corresponding to the circuit in
Fig. 1(c). After the final layer, the lower N − 1 outputs are
dropped to produce a single output value which corresponds
to y. Unlike the ideal XOR input-output relationship described
above, for the XOR task learned by the ONN we normalize the
input vectors such that they always have an L2 norm of 1. This
constraint is equivalent to enforcing a constant input power to
the network. Additionally, because the activation function causes
the optical power level to be attenuated at each layer, we take
the high output state to be a value of 0.2, as shown in Fig. 1(b).
The low output remains at a value of 0.0. An alternative to using
a smaller amplitude for the output high state would be to add
additional ports with fixed power biases to increase the total
input power to the network, similarly to the XOR demonstrated
in Ref. [23].

Fig. 5. (a) Architecture of an L-layer ONN used to implement an N -input
XOR logic function. (b) Red dots indicate the learned input-output relationship
of the XOR forN = 4 on an 2-layer ONN. Electro-optic activation functions are
configured with gain g = 1.75π and biasing phase φb = π. (c) Mean squared
error (MSE) versus training epoch. (d) Final MSE after 5000 epochs averaged
over 20 independent training runs vs activation function gain. Different lines
correspond to the responses shown in Fig. 2, with φb = 1.00π, 0.85π, 0.00π,
and 0.50π. Shaded regions correspond to the range (minimum and maximum)
final MSE from the 20 training runs.

In Fig. 5(b) we show the four-input XOR input-output rela-
tionship which was learned by a two-layer ONN. The electro-
optic activation functions were configured to have a gain of
g = 1.75π and biasing phase of φb = π. This biasing phase
configuration corresponds to the ReLU-like response shown
in Fig. 2(a). The black markers indicate the desired output
values while the red circles indicate the output learned by the
two-layer ONN. Fig. 5(b) indicates excellent agreement between
the learned output and the desired output. The evolution of the
mean squared error (MSE) between the ONN output and the
desired output during training confirms this agreement, as shown
in Fig. 5(c), with a final MSE below 10−5.

To train the ONN, a total of 2N = 16 training examples were
used, corresponding to all possible binary input combinations
along the x-axis of Fig. 5(b). All 16 training examples were fed
through the network in a batch to calculate the mean squared
error (MSE) loss function. The gradient of the loss function with
respect to each phase shifter was computed by backpropagating
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the error signal through the network to calculate the loss sensi-
tivity at each phase shifter [23]. The above steps were repeated
until the MSE converged, as shown in Fig. 5(c). Only the phase
shifter parameters were optimized by the training algorithm,
while all parameters of the activation function were unchanged.

To demonstrate that the nonlinearity provided by the electro-
optic activation function is essential for the ONN to successfully
learn the XOR, in Fig. 5(d) we plot the final MSE after 5000
training epochs, averaged over 20 independent training runs,
as a function of the activation function gain, gφ. The shaded
regions indicates the minimum and maximum range of the final
MSE over the 20 training runs. The four lines shown in Fig. 5(d)
correspond to the four activation function bias configurations
shown in Fig. 2.

For the blue curve in Fig. 5(d), which corresponds to the
ReLU-like activation, we observe a clear improvement in the
final MSE with an increase in the nonlinearity strength. We also
observe that for very high nonlinearity, above gφ = 1.5π, the
range between the minimum and maximum final MSE broadens
and the mean final MSE increases. However, the best case
(minimum) final MSE continues to decrease, as indicated by the
lower border of the shaded blue region. This trend indicates that
although increasing nonlinearity improves the ONN’s ability to
learn the XOR function, very high levels of nonlinearity may
also prevent the training algorithm from converging.

A trend of decreasing MSE with increasing nonlinearity is
also observed for the activation corresponding to the green curve
in Fig. 5(d). However, the range of MSE values begins to broaden
at a lower value of gφ = 1.0π. Such broadening may be a result
of the changing slope in the activation function output, as shown
in Fig. 2(e). For the activation functions corresponding to the
red and orange curves in Fig. 5(d), the final MSE decreases
somewhat with an increase in gφ, but generally remains much
higher than the other two activation function responses. We
conclude that these two responses are not as well suited for
learning the XOR function. Overall, these results demonstrate
that the flexibility of our architecture to achieve specific forms
of nonlinear activation functions is important for the successful
operation of an ONN.

B. Handwritten Digit Classification

The second task we consider for demonstrating the activation
function is classifying images of handwritten digits from the
MNIST dataset, which has become a standard benchmark prob-
lem for ANNs [37]. The dataset consists of 70,000 grayscale
28×28 pixel images of handwritten digits between 0 and 9.
Several representative images from the dataset are shown in
Fig. 6(a).

To reduce the number of input parameters, and hence
the size of the neural network, we use a preprocessing
step to convert the images into a Fourier-space representa-
tion. Specifically, we compute the 2D Fourier transform of
the images which is defined mathematically as c(kx, ky) =∑

m,n e
jkxm+jkyng(m,n), where g(m,n) is the gray scale

value of the pixel at location (m,n) within the image. The

amplitudes of the Fourier coefficients c(kx, ky) are shown be-
low their corresponding images in Fig. 6(a). These coefficients
are generally complex-valued, but because the real-space map
g(m,n) is real-valued, the condition c(kx, ky) = c∗(−kx,−ky)
applies.

We observe that the Fourier-space profiles are mostly con-
centrated around small kx and ky , corresponding to the center
region of the profiles in Fig. 6(a). This is due to the slowly varying
spatial features in the images. We can therefore expect that most
of the information is carried by the small-k Fourier components,
and with the goal of decreasing the input size, we can restrict

the data to N coefficients with the smallest k =
√

k2x + k2y . An

additional advantage of this preprocessing step is that it reduces
the computational resources required to perform the training
process because the neural network dimension does not need to
accommodate all 282 = 784 pixel values as inputs.

Fourier preprocessing is particularly relevant for ONNs for
two reasons. First, the Fourier transform has a straightforward
implementation in the optical domain using techniques from
Fourier optics involving standard components such as lens and
spatial filters [38]. Second, this approach allows us to take advan-
tage of the fact that ONNs are complex-valued functions. That
is to say, the N complex-valued coefficients c(kx, ky) can be
handled by anN -dimensional ONN, whereas to handle the same
input using a real-valued neural network requires a twice larger
dimension. The ONN architecture used in our demonstration is
shown schematically in Fig. 6(a). The N Fourier coefficients
closest to kx = ky = 0 are fed into an optical neural network
consisting of L layers, after which a drop-mask reduces the
final output to 10 components. The intensity of the 10 outputs
are recorded and normalized by their sum, which creates a
probability distribution that may be compared with the one-hot
encoding of the digits from 0 to 9. The loss function is defined
as the cross-entropy between the normalized output intensities
and the correct one-hot vector.

During each training epoch, a subset of 60,000 images from
the dataset were fed through the network in batches of 500.
The remaining 10,000 image-label pairs were used to form
a test dataset. For a two-layer network with N = 16 Fourier
components, Fig. 6(b) compares the classification accuracy over
the training dataset (solid lines) and testing dataset (dashed
lines) while Fig. 6(b) compares the cross entropy loss during
optimization. The blue curves correspond to an ONN with no
activation function (e.g. a linear optical classifier) and the orange
curves correspond to an ONN with the electro-optic activation
function configured with gφ = 0.05π,φb = 1.00π, andα = 0.1.
The gain setting in particular was selected heuristically. We ob-
serve that the nonlinear activation function results in a significant
improvement to the ONN performance during and after training.
The final validation accuracy for the ONN with the activation
function is93%, which amounts to an 8% difference as compared
to the linear ONN which achieved an accuracy of 85%.

The confusion matrix computed over the testing dataset is
shown in Fig. 6(d). We note that the prediction accuracy of
93% is high considering that only N = 16 complex Fourier
components were used, and the network is parameterized by only
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Fig. 6. (a) Schematic of an optical image recognition setup based on an ONN. Images of handwritten numbers from the MNIST database are preprocessed by
converting from real-space to k-space and selecting N Fourier coefficients associated with the smallest magnitude k-vectors. (b) Test accuracy (solid lines) and
training accuracy (dashed lines) during training for a two layer ONN without activation functions (blue) and with activation functions (orange). N = 16 Fourier
components were used as inputs to the ONN and each vector was normalized such that its L2 norm is unity. The activation function parameters were gφ = 0.05π
and φb = 1.00π. (c) Cross entropy loss during training. (d) Confusion matrix, specified in percentage, for the trained ONN with the electro-optic activation
function.

TABLE III
ACCURACY ON THE MNIST TESTING DATASET AFTER OPTIMIZATION

∗The phase gain, gφ, of each layer was optimized during training.

2×N2 × L = 1024 free parameters. Moreover, this prediction
accuracy is comparable with the 92.6% accuracy achieved in
a fully-connected linear classifier with 4010 free parameters
taking all of the 282 = 784 real-space pixel values as inputs
[37]. Finally, in Table III we show that the accuracy can be
further improved by including a third layer in the ONN and by
making the activation function gain a trainable parameter. This
brings the testing accuracy to94%. Based on the parameters from
Table I and the scaling from Table II, the 3 layer handwritten digit
classification system would consume 4.8 W while performing
7.7× 1012 MAC/sec. Its prediction latency would be 1.5 ns.

VII. CONCLUSION

In conclusion, we have introduced an architecture for synthe-
sizing optical-to-optical nonlinearities and demonstrated its use
as a nonlinear activation function in a feed forward ONN. Using
numerical simulations, we have shown that such activation func-
tions enable an ONN to be successfully applied to two machine
learning benchmark problems: (1) learning a multi-input XOR
logic function, and (2) classifying handwritten numbers from
the MNIST dataset. Rather than using all-optical nonlinearities,
our activation architecture uses intermediate signal pathways in
the electrical domain which are accessed via photodetectors and
phase modulators. Specifically, a small portion of the optical
input power is tapped out which undergoes analog processing
before modulating the remaining portion of the same optical
signal. Whereas all-optical nonlinearities have largely fixed
responses, a benefit of the electro-optic approach demonstrated
here is that signal amplification in the electronic domain can
overcome the need for high optical signal powers to achieve a
significantly lower activation threshold. For example, we show
that a phase modulator Vπ of 10 V and an optical-to-electrical
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conversion gain of 57 dBΩ, both of which are experimentally
feasible, result in an optical activation threshold of 0.1 mW. We
note that this nonlinearity is compatible with the in situ training
protocol proposed in Ref. [23], which is applicable to arbitrary
activation functions.

Our activation function architecture can utilize the same in-
tegrated photodetector and modulator technologies as the input
and output layers of a fully-integrated ONN. This means that an
ONN using this activation suffers no reduction in processing
speed, despite using analog electrical components. The only
trade off made by our design is an increase in latency due to
the electro-optic conversion process. However, we find that an
ONN with dimension N = 100 has a total prediction latency of
2.4 ns/layer, with approximately equal contributions from the
propagation of optical pulses through the interferometer mesh
and from the electro-optic activation function. Conservatively,
we estimate the energy consumption of an ONN with this
activation function to be 100 fJ/MAC, but this figure of merit
could potentially be reduced by orders of magnitude using highly
efficient modulators and amplifier-free optoelectronics [29].

Finally, we emphasize that in our activation function, the ma-
jority of the signal power remains in the optical domain. There is
no need to have a new optical source at each nonlinear layer of the
network, as is required in previously demonstrated electro-optic
neuromorphic hardware [14], [21], [39] and reservoir computing
architectures [40], [41]. Additionally, each activation function in
our proposed scheme is a standalone analog circuit and therefore
can be applied in parallel. While we have focused here on
the application of our architecture as an activation function
in a feedforward ONN, the synthesis of low-threshold optical
nonlinearlities using this circuit could be of broader interest
for optical computing as well as microwave photonic signal
processing applications.
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