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Universal unitary photonic devices can apply arbitrary unitary transformations to a vector of input
modes and provide a promising hardware platform for fast and energy-efficient machine learning using
light. We simulate the gradient-based optimization of random unitary matrices on universal photonic
devices composed of imperfect tunable interferometers. If device components are initialized uniform ran-
domly, the locally interacting nature of the mesh components biases the optimization search space toward
banded unitary matrices, limiting convergence to random unitary matrices. We detail a procedure for ini-
tializing the device by sampling from the distribution of random unitary matrices and show that this greatly
improves convergence speed. We also explore mesh architecture improvements such as adding extra tun-
able beam splitters or permuting waveguide layers to further improve the training speed and scalability of
these devices.
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I. INTRODUCTION

Universal multiport interferometers are optical networks
that perform arbitrary unitary transformations on input
vectors of coherent light modes. Such devices can be
used in applications including quantum computing (e.g.,
boson sampling, photon walks) [1–4]; mode unscram-
blers [5]; photonic neural networks [6–8]; and finding
optimal channels through lossy scatterers [9]. While uni-
versal photonic devices have been experimentally realized
at a relatively small scale [5,6], commercial applications
such as hardware for energy-efficient machine learning and
signal processing can benefit from scaling the devices to
up to N = 1000 modes. At this scale, fabrication imper-
fections and components with scale-dependent sensitivities
can negatively affect performance.

One canonical universal photonic device is the rectan-
gular multiport interferometer mesh [10] shown in Fig. 1
interfering N = 8 modes. In multiport interferometers,
an N -dimensional vector is represented by an array of
modes arranged in N single-mode waveguides. A uni-
tary operation is applied to the input vector by tuning
Mach-Zehnder interferometers (MZIs) represented by the
red dots of Fig. 1. Each MZI is a two-port optical com-
ponent made of two 50:50 beam splitters and two tun-
able single-mode phase shifters. Other mesh architectures
have been proposed, such as the triangular mesh [11]
(shown in Appendix C), the universal cascaded binary tree
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architecture [12], and lattice architectures where light does
not move in a forward-only direction [13–15].

The scalability of optimizing mesh architectures, espe-
cially using gradient-based methods, is limited by the
ability of the locally interacting architecture to control the
output powers in the mesh. If phase shifts in the mesh are
initialized uniform randomly, light propagates through the
device in a manner similar to a random walk. The off-
diagonal, nonlocal elements of the implemented unitary
matrix tend to be close to zero because transitions between
inputs and outputs that are far apart have fewer paths (e.g.,
input 1 and output 8 in Fig. 1 have a single path). The
resulting mesh therefore implements a unitary matrix with
a banded structure that is increasingly pronounced as the
matrix size increases.

In many applications such as machine learning [6] and
quantum computing [2,16], we avoid this banded unitary
matrix behavior in favor of random unitary matrices. A
random unitary matrix is achieved when the device phase
shifts follow a distribution derived from random matrix
theory [16–20]. In the random matrix theory model, we
assign a sensitivity index to each component that increases
toward the center of the mesh, as shown in Fig. 1. The
more sensitive components toward the center of the mesh
require higher transmissivities and tighter optimization
tolerances. If the required tolerances are not met, the
implemented unitary matrix begins to show the undesired
banded behavior.

In Sec. II, we introduce the photonic mesh architecture
and sources of error that can exacerbate the banded uni-
tary matrix problem. In Sec. III, we explicitly model the
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FIG. 1. Mesh diagram representing the locally interacting rect-
angular mesh for N = 8. The inputs (and single-mode phase
shifts at the inputs) are represented by blue triangles. Outputs are
represented by purple squares. The MZI nodes are represented
by red dots labeled with sensitivity index αn� (e.g., α44 = 7 is the
most sensitive node). The nodes represent the Givens rotation
Un (in orange) at vertical layer � (in green). Each photonic MZI
node can be represented with 50:50 beam splitters B (red) and
phase shifters Rθ , Rφ (orange), with required ranges 0 ≤ θ ≤ π

and 0 ≤ φ < 2π .

component settings to implement a random unitary matrix
and ultimately avoid the banded unitary matrix problem.
We propose a “Haar initialization” procedure that allows
light to propagate uniformly to all outputs from any input.
We use this procedure to initialize the gradient-based opti-
mization of a photonic mesh to learn unknown random
unitary matrices given training data. We show that this
optimization converges even in the presence of significant
simulated fabrication errors.

In Secs. IV and V, we propose and simulate two
alterations to the mesh architecture that further improve
gradient-based optimization performance. First, we add
redundant MZIs in the mesh to reduce convergence error
by up to 5 orders of magnitude. Second, we permute
the mesh interactions while maintaining the same number
of tunable components, which increases allowable toler-
ances of phase shifters, decreases off-diagonal errors, and
improves convergence time.

II. PHOTONIC MESH

We define the photonic mesh when operated perfectly
and then discuss how beam-splitter or phase-shift errors
can affect device performance.

A. Photonic unitary implementation

A single-mode phase shifter can perform an arbitrary
U(1) transformation eiφ on its input. A phase-modulated
MZI with perfect (50:50) beam splitters can apply to its
inputs a unitary transformation U of the form

U(θ , φ) := RφBRθB

= 1
2

[
eiφ 0
0 1

] [
1 i
i 1

] [
eiθ 0
0 1

] [
1 i
i 1

]
(1)

= ieiθ/2

⎡
⎢⎣

eiφ sin
θ

2
eiφ cos

θ

2

cos
θ

2
− sin

θ

2

⎤
⎥⎦ ,

where B is the beam-splitter operator and Rθ , Rφ are upper
phase-shift operators. Equation (1) is represented diagram-
matically by the configuration in Fig. 1. (Other configu-
rations with two independent phase shifters between the
beam splitters B are ultimately equivalent for photonic
meshes [21].) If one or two single-mode phase shifters are
added at the inputs, we can apply an arbitrary SU(2) or
U(2) transformation to the inputs, respectively.

We define the transmissivity and reflectivity of the MZI
as

t := cos2
(

θ

2

)
= |U12|2 = |U21|2,

r := sin2
(

θ

2

)
= 1 − t = |U11|2 = |U22|2.

(2)

In this convention, when θ = π , we have r = 1, t = 0 (the
MZI “bar state”), and when θ = 0, we have r = 0, t = 1
(the MZI “cross state”).

If there are N input modes and the interferometer is con-
nected to waveguides n and n + 1, then we can embed the
2 × 2 unitary U from Eq. (1) in N -dimensional space with
a locally interacting unitary “Givens rotation” Un defined
as

Un :=

n n + 1⎡
⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

1 · · · 0 0 · · · 0
...

. . .
...

...
...

0 · · · U11 U12 · · · 0 n
0 · · · U21 U22 · · · 0 n + 1
...

...
...

. . .
...

0 · · · 0 0 · · · 1

. (3)

All diagonal elements are 1 except those labeled U11 and
U22, which have magnitudes of

√
r = √

1 − t, and all off-
diagonal elements are 0 except those labeled U12 and U21,
which have magnitudes of

√
t.
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Arbitrary unitary transformations can be implemented
on a photonic chip using only locally interacting
MZIs [11]. In this paper, we focus on optimizing a rect-
angular mesh [10] of MZIs; however, our ideas can be
extended to other universal schemes, such as the triangular
mesh [22], as well.

In the rectangular mesh scheme [10] of Fig. 1, we
represent ÛR ∈ U(N ) in terms of N (N − 1)/2 locally
interacting Givens rotations Un and N single-mode phase
shifts at the inputs represented by diagonal unitary
D(γ1, γ2, . . . γN ):

ÛR :=
N∏

�=1

∏
n∈S�,N

Un(θn�, φn�) · D(γ1, γ2, . . . γN ), (4)

where our layerwise product left-multiplies from � = N
to 1 (in general, for matrix products for a sequence
{M�}, we define the multiplication order

∏N
�=1 M� =

MN MN−1 · · · M1); the single-mode phase shifts are γn ∈
[0, 2π); and the Givens rotations are parameterized
by θn� ∈ [0, π ], φn� ∈ [0, 2π). (Since γn, φn� are periodic
phase parameters, they are in half-open intervals [0, 2π).
In contrast, any θn� ∈ [0, π ] must be in a closed inter-
val to achieve all transmissivities tn� ∈ [0, 1].) We define
the top indices of each interacting mode for each vertical
layer as the set S�,N = {n ∈ [1, 2, . . . N − 1] | n(mod 2) ≡
�(mod 2)}. This vertical layer definition follows the con-
vention of Refs. [23] and [7] and is depicted in Fig. 1,
where � represents the index of the vertical layer.

B. Beam-splitter error tolerances

The expressions in Eqs. (1) and (4) assume perfect fab-
rication. In practice, however, we would like to simulate
how practical devices with errors in each transfer matrix
B, Rφ , Rθ in Eq. (1) impact optimization performance.

In fabricated chip technologies, imperfect beam splitters
B can have a split ratio error ε that changes the behavior of
the red 50:50 coupling regions in Fig. 1 or B in Eq. (1). The
resultant scattering matrix Uε with imperfect beam splitters
Bε can be written as

Bε := 1√
2

[√
1 + ε i

√
1 − ε

i
√

1 − ε
√

1 + ε

]
,

Uε := RφBεRθBε .
(5)

As shown in Appendix B, if we assume both beam splitters
have identical ε, we find that tε := t(1 − ε2) ∈ [0, 1 − ε2]
is the realistic transmissivity; rε := r + t · ε2 ∈ [ε2, 1] is
the realistic reflectivity; and t, r are the ideal transmissivity
and reflectivity defined in Eq. (2).

The unitary matrices in Eq. (5) cannot express the full
transmissivity range of the MZI, with errors of up to ε2

in the transmissivity, potentially limiting the performance

of greedy progressive photonic algorithms [24–26]. Our
Haar phase theory, which we develop in the following
section, determines acceptable interferometer tolerances
for calibration of a “perfect mesh” consisting of imper-
fect beam splitters [21] given large N . We will additionally
show that simulated photonic backpropagation [7] with
adaptive learning can adjust to nearly match the perfor-
mance of perfect meshes with errors as high as ε = 0.1 for
meshes of size N = 128.

C. Phase-shift tolerances

Another source of uncertainty in photonic meshes is the
phase-shift tolerances of the mesh that affect the matrices
Rθ , Rφ of Eq. (1), shown in orange in Fig. 1. Error sources
such as thermal cross talk or environmental drift may result
in slight deviance of phase shifts in the mesh from intended
operation. Such errors primarily affect the control param-
eters θn� that control light propagation in the mesh by
affecting the MZI split ratios. This nontrivial problem war-
rants a discussion of mean behavior and sensitivities (i.e.,
the distribution) of θn� needed to optimize a random unitary
matrix.

III. HAAR INITIALIZATION

A. Cross-state bias and sensitivity index

The convergence of global optimization depends criti-
cally on the sensitivity of each phase shift. The gradient
descent optimization we study in this paper converges
when the phase shifts are correct to within some accept-
able range. This acceptable range can be rigorously defined
in terms of average value and variance of phase shifts
in the mesh that together define an unbiased (“Haar ran-
dom”) unitary matrix. (A Haar random unitary is defined
as Gram-Schmidt orthogonalization of N standard normal
complex vectors [16,20].) To implement a Haar random
unitary, some MZIs in the mesh need to be biased toward
a cross state (tn� near 1, θn� near 0) [16,24]. This cross-
state bias correspondingly “pinches” the acceptable range
for transmissivity and phase shift near the limiting cross-
state configuration, resulting in higher sensitivity, as can
be seen in Fig. 3(b).

For an implemented Haar random unitary matrix, low-
tolerance, transmissive MZIs are located toward the center
of a rectangular mesh [16,24] and the apex of a triangu-
lar mesh as proven in Appendix C. For both the triangular
and rectangular meshes, the cross-state bias and corre-
sponding sensitivity for each MZI depend only on the
total number of reachable waveguide ports, as proven in
Appendix I. Based on this proof, we define the sensitivity
index αn� := |In�| + |On�| − N − 1 (note that 1 ≤ αn� ≤
N − 1, and there are always N − αn� MZIs that have a sen-
sitivity index of αn�), where In� and On� are the subsets
of input and output waveguides reachable by light exiting
or entering the MZI, respectively, and |·| denotes set size.
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(a)

(e) (f)

(b)

(c) (d)

FIG. 2. (a) The sensitivity index αn� for N = 64. (b) Checker-
board plot for the average reflectivity 〈rn�〉 in a rectangular
mesh. (c) Decomposition of Ref. [10] for a Haar-random matrix
yields phases close to cross state in the middle of the mesh. (d)
The Haar phase ξn� for the rectangular mesh better displays the
randomness. (e),(f) Field measurements (absolute value) from
propagation at input 32 in (e) Haar and (f) uniform random
initialized rectangular meshes with N = 64.

Figures 1 and 2(a) show the sensitivity index for the rect-
angular mesh, which clearly increases toward the center
MZI.

B. Phase-shift distributions and Haar phase

The external φn�, γn phase shifts do not affect the the
transmissivity tn� and therefore obey uniform random dis-
tributions [16]. In contrast, the θn� phase shifts have a prob-
ability density function (PDF) that depends on αn� [16]:

Pαn�

(
θn�

2

)
= αn� sin

(
θn�

2

)[
cos

(
θn�

2

)]2αn�−1

. (6)

The general shape of this distribution is presented in
Fig. 3(b), showing how an increase in αn� biases θn� toward
the cross state with higher sensitivity.

We define the Haar phase ξn� as the cumula-
tive distribution function (CDF) of θn�/2 starting from

(a) (b)

(c) (d)

FIG. 3. (a) Plot of the relationship between ξα and θ . (b) We
show that phase-shift standard deviation σθ ;α decreases as α

increases. (c) A plot of σθ ;α as α increases. (d) The transmissivity
of a MZI component as a function of a periodic Haar phase has
a power-law relationship. The periodic Haar phase ξ̃α is mapped
to the Haar phase by a function ξ : R → [0, 1] as discussed in
Appendix G.

θn�/2 = π/2:

ξn� :=
∫ θn�/2

π/2
Pαn�

(θ)dθ . (7)

Using Eqs. (6) and (7), we can define ξn�(θn�) ∈ [0, 1] that
yields a Haar random matrix:

ξn� =
[

cos2
(

θn�

2

)]αn�

= tαn�
n� , (8)

where tn� represents the transmissivity of the MZI, which
is a function of θn� as defined in Eqs. (2).

C. Haar initialization

In the physical setting, it is useful to find the inverse
of Eq. (8) to directly set the measurable transmissivity tn�

of each MZI using a uniformly varying Haar phase ξn� ∼
U(0, 1), a process we call “Haar initialization,” shown in
Figs. 2(c) and 2(d):

tn� = αn�
√

ξn�,

θn� = 2 arccos
√

tn� = 2 arccos
2αn�
√

ξn�,
(9)

where the expression for θn� is just a rearrangement of
Eq. (2).
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Haar initialization can be achieved progressively using
a procedure similar to that in Ref. [25]. If the phase shifters
in the mesh are all well characterized, the transmissivi-
ties can be directly set [16]. We show in Sec. V that Haar
initialization improves the convergence speed of gradient
descent optimization significantly.

We can also use Eq. (9) to find the average transmissiv-
ity and reflectivity for a MZI parameterized by αn� as is
found through simulation in Ref. [24]:

〈tn�〉 =
∫ 1

0
dξn�

αn�
√

ξn� = αn�

αn� + 1
,

〈rn�〉 = 1
αn� + 1

= 1
|In�| + |On�| − N

.
(10)

The average reflectivity 〈rn�〉 shown in Fig. 2(b) gives a
simple interpretation for the sensitivity index shown in
Fig. 2(a). The average reflectivity is equal to the inverse
of the total number of inputs and outputs reachable by the
MZI minus the number of ports on either side of the device,
N . This is true regardless of whether αn� is assigned for a
triangular or rectangular mesh.

To see what the Haar initialization has accomplished,
we can compare the field propagation through the rectan-
gular mesh from a single input when it is Haar initialized
versus uniform initialized in Fig. 2(e). Physically, this cor-
responds to light in the mesh spreading out quickly from
the input of the mesh and “interacting” more near the
boundaries of the mesh (inputs, outputs, top, and bottom),
as compared to the center of the mesh, which has high
transmissivity. In contrast, when phases are randomly set,
the light effectively follows a random walk through the
mesh, resulting in the field propagation pattern shown in
Fig. 2(f).

D. Tolerance dependence on N

While Haar initialization is based on how the aver-
age component reflectivity scales with N , optimization
convergence and device robustness ultimately depend on
how phase-shift tolerances scale with N . The average
sensitivity index in the mesh is 〈αn�〉 = (N + 1)/3. As
shown in Figs. 3(b) and 3(c), the standard deviation σθ ;α
over the PDF Pα decreases as α increases. Therefore, a
phase shifter’s allowable tolerance, which roughly corre-
lates with σθ ;α , decreases as the total number of input and
output ports affected by that component increases. Since
〈αn�〉 increases linearly with N , the required tolerance gets
more restrictive at large N , as shown in Fig. 3(c). We find
that the standard deviation is on the order 10−2 radians
for most values of N in the specified range. Thus, if ther-
mal cross talk is ignored [6], it is possible to implement a
known random unitary matrix in a photonic mesh assum-
ing perfect operation. However, we concern ourselves with
on-chip optimization given just input and output data, in

which case the unitary matrix is unknown. In such a case,
the decreasing tolerances do pose a challenge in converg-
ing to a global optimum as N increases. We demonstrate
this problem for N = 128 in Sec. V.

To account for the scalability problem in global opti-
mization, one strategy may be to design a component in
such a way that the mesh MZIs can be controlled by Haar
phase voltages as in Fig. 3(d) and Eq. (9). The transmis-
sivity dependence on a periodic Haar phase [shown in
Fig. 3(d) and discussed in Appendix G] is markedly dif-
ferent from the usual sinusoidal dependence on periodic
θn�. The MZIs near the boundary vary in transmissivity
over a larger voltage region than the MZIs near the center,
where only small voltages are needed get to full transmis-
sivity. This results in an effectively small control tolerance
near small voltages. This motivates the modifications to
the mesh architecture which we discuss in the next section.

IV. ARCHITECTURE MODIFICATIONS

We propose two architecture modifications that can
relax the transmissivity tolerances in the mesh discussed
in Sec. III and result in significant improvement in opti-
mization.

A. Redundant rectangular mesh

By adding extra tunable MZIs, it is possible to greatly
accelerate the optimization of a rectangular mesh to an
unknown unitary matrix. The addition of redundant tun-
able layers to a redundant rectangular mesh (RRM) is
depicted in green in Fig. 4(a). The authors in Ref. [24]
point out that using such “underdetermined meshes” (num-
ber of inputs less than the number of tunable layers in the
mesh) can overcome photonic errors and restore fidelity
in unitary construction algorithms. Adding layers to the
mesh increases the overall optical depth of the device, but
embedding smaller meshes with extra beam-splitter layers
in a rectangular mesh of an acceptable optical depth does
not pose intrinsic waveguide loss-related problems.

B. Permuting rectangular mesh

Another method to accelerate the optimization of a rect-
angular mesh is to shuffle outputs at regular intervals
within the rectangular mesh. This shuffling relaxes com-
ponent tolerances and uniformity of the number of paths
for each input-output transition. We use this intuition to
formally define a permuting rectangular mesh (PRM). For
simplicity, assume N = 2K for some positive integer K .
Define “rectangular permutation” operations Pk that allow
inputs to interact with waveguides at most 2k away for k <

K . These rectangular permutation blocks can be imple-
mented using a rectangular mesh composed of MZIs with
fixed cross-state phase shifts, as shown in Fig. 4(b), or
using low-loss waveguide crossings.

064044-5



PAI, BARTLETT, SOLGAARD, and MILLER PHYS. REV. APPLIED 11, 064044 (2019)

(a)

(b)

FIG. 4. (a) A 16 × 16 rectangular mesh (red). Extra tunable
layers (green) may be added to significantly reduce conver-
gence time. (b) A 16-input, 30-layer permuting rectangular mesh.
The rectangular permutation layer is implemented using either
waveguide crossings or cross-state MZIs (gray).

We now add permutation matrices P1, P2, . . . PK−1 into
the middle of the rectangular mesh as follows:

ÛPR := MK

(
K−1∏
k=1

PkMk

)
,

Mk :=
min

(
k
 N

K �,N
)

∏
�=(k−1)
 N

K �

∏
n∈S�,N

Un(θn�, φn�),

(11)

where 
x� represents the nearest integer larger than x.
There are two operations per block k: an 
N/K�-layer

rectangular mesh, which we abbreviate as Mk, and the
rectangular permutation mesh Pk, where block index k ∈
[1 · · · K − 1]. This is labeled in Fig. 4(b).

V. SIMULATIONS

Now that we have discussed the mesh modifications
and Haar initialization, we simulate global optimization to
show how our framework can improve convergence per-
formance by up to five orders of magnitude, even in the
presence of fabrication error.

A. Mesh initialization

We begin by discussing the importance of initializing
the mesh to respect the cross-state bias and sensitivity of

each component for the Haar random unitary matrices dis-
cussed in Sec. III. Uniform random phase initialization is
problematic because it is agnostic of the sensitivity and
average behavior of each component. We define this distri-
bution of matrices as UR(N , L) for a rectangular mesh for
N inputs and L layers. As shown previously in Fig. 2(f),
any given input follows a random-walklike propagation
if phases are initialized uniform randomly, so there will
only be nonzero matrix elements within a “bandsize” about
the diagonal. This bandsize decreases as circuit size N
increases as shown in Fig. 5.

We compare the bandsizes of banded unitary matri-
ces in simulations qualitatively as we do in Fig. 5 or
quantitatively as we do in Appendix D. We randomly gen-
erate U ∼ UR(N , N ), U ∼ UPR(N ) (permuting rectangular
mesh with N tunable layers), and U ∼ UR(N , N + δN )

(redundant rectangular mesh with δN extra tunable lay-
ers). Figure 5 shows a significant reduction in bandsize as
N grows larger for rectangular meshes. This phenomenon
is not observed with permuting rectangular meshes, which
generally have the same bandsize as Haar random matrices
(independent of N ) as shown in Fig. 5 and Appendix D.
This correlates with permuting rectangular meshes having
faster optimization and less dependence on initialization.

Instead of initializing the mesh using uniform random
phases, we use Haar initialization as in Eq. (9) to avoid
starting with a banded unitary configuration. This initial-
ization, which we recommend for any photonic mesh-
based neural network application, dramatically improves
convergence because it primes the optimization with the
right average behavior for each component. We find in our
simulations that as long as the initialization is calibrated

FIG. 5. Elementwise absolute values of unitary matrices result-
ing from rectangular (U ∼ UR) and permuting rectangular (U ∼
UPR) meshes, where meshes are initialized with uniform-random
phases.
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toward higher transmissivity (θn� near 0), larger mesh net-
works can also have reasonable convergence times similar
to when the phases are Haar initialized.

The proper initialization of permuting rectangular
meshes is less clear because the tolerances and average
behavior of each component have not yet been modeled.
Our proposal is to initialize each tunable block Mk as an
independent mesh using the same definition for αn�, except
replacing N with the number of layers in Mk, 
N/K�. This
is what we use as the Haar initialization equivalent in the
permuting rectangular mesh case, although it is possible
there may be better initialization strategies for the nonlocal
mesh structure.

B. Optimization problem and synthetic data

After initializing the photonic mesh, we proceed to opti-
mize the mean-square error cost function for an unknown
Haar random unitary U:

minimize
θn�,φn�,γn

1
2N

∥∥∥Û(θn�, φn�, γn) − U
∥∥∥2

F
, (12)

where the estimated unitary matrix function Û maps N 2

phase-shift parameters θn�, φn�, γn to U(N ) via Eq. (4)
or (11) and ‖ · ‖F denotes the Frobenius norm. Since
trigonometric functions parameterizing Û are nonconvex,
we know that Eq. (12) is a nonconvex problem. The
nonconvexity of Eq. (12) suggests learning a single uni-
tary transformation in a deep neural network might have
significant dependence on initialization.

To train the network, we generate random unit-norm
complex input vectors of size N and generate correspond-
ing labels by multiplying them by the target matrix U. We
use a training batch size of 2N . The synthetic training data
of unit-norm complex vectors is therefore represented by
X ∈ CN×2N . The minibatch training cost function is sim-
ilar to the test cost function, Ltrain = ‖ÛX − UX ‖2

F . The
test set is the identity matrix I of size N × N . The test
cost function, in accordance with the training cost function
definition, thus matches Eq. (12).

C. Training algorithm

We simulate the global optimization of a unitary mesh
using automatic differentiation in tensorflow, which can
be physically realized using the in situ backpropagation
procedure in Ref. [7]. This optical backpropagation pro-
cedure physically measures ∂Ltrain/∂θn� using interfero-
metric techniques, which can be extended to any of the
architectures that we discuss in this paper.

The on-chip backpropagation approach is also likely
faster for gradient computation than other training
approaches such as the finite-difference method mentioned
in past on-chip training proposals [6]. We find empirically

that the Adam update rule (a popular first-order adap-
tive update rule [27]) outperforms the standard stochastic
gradient descent for the training of unitary networks. If gra-
dient measurements for the phase shifts are stored during
training, adaptive update rules can be applied using succes-
sive gradient measurements for each tunable component
in the mesh. Such a procedure requires minimal compu-
tation (i.e., locally storing the previous gradient step) and
can act as a physical test of the simulations we now dis-
cuss. Furthermore, we avoid quasi-Newton optimization
methods such as L-BFGS used in Ref. [24] that cannot be
implemented physically as straightforwardly as first-order
methods.

The models are trained using our open source simula-
tion framework neurophox (see Ref. [28]) using a more
general version of the vertical layer definition proposed in
Refs. [23] and [7]. The models are programmed in tensor-
flow [29] and run on an NVIDIA GeForce GTX1080 GPU
to improve optimization performance.

D. Results

We now compare training results for rectangular, redun-
dant rectangular, and permuting rectangular meshes given
N = 128. In our comparison of permuting rectangular
meshes and rectangular meshes, we analyze performance
when beam-splitter errors are distributed throughout the
mesh as either ε = 0 or ε ∼ N (0, 0.01) and when the θn�

are randomly or Haar initialized [according to the PDF in
Eq. (6)]. We also analyze optimization performances of
redundant rectangular meshes where we vary the number
of vertical MZI layers.

From our results, we report five key findings:

1. Optimization of N = 128 rectangular meshes
results in significant off-diagonal errors due to bias toward
the banded matrix space of UR(128), as shown in Fig. 6.

2. Rectangular meshes converge faster when Haar ini-
tialized than when uniformly random initialized, as in
Fig. 6, in which case the estimated matrix converges
toward a banded configuration, as shown in Appendix H.

3. Permuting rectangular meshes converge faster than
rectangular meshes despite having the same number of
total parameters, as shown in Fig. 6.

4. Redundant rectangular meshes, because of an
increase in the number of parameters, have up to 5 orders
of magnitude better convergence when the number of
vertical layers is doubled compared to rectangular and
permuting rectangular meshes, as shown in Fig. 7.

5. Beam-splitter imperfections slightly reduce the
overall optimization performance of permuting and redun-
dant rectangular meshes, but reduce the performance of
the rectangular mesh significantly. (See Fig. 6(a) and
Appendix E.)
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(a)

(b) (c)

(d) (e)

-

FIG. 6. We implement six different optimizations for N =
128, where we vary the choice of permuting rectangular mesh
(PRM) or rectangular mesh (RM); the initialization (random θn�

or Haar-initialized θn�); and photonic transmissivity error dis-
placements [ε = 0 or ε ∼ N (0, 0.01), where σ 2

ε = 0.01 is the
variance of the beam-splitter errors]. The conditions are 20,000
iterations, Adam update, learning rate of 0.0025, batch size of
256, simulated in tensorflow. (a) Comparison of optimization
performance (defaults are Haar initialization and εn� = 0 unless
otherwise indicated). The optimized error magnitude spatial map
for (b) rectangular mesh shows higher off-diagonal errors than
(c) permuting rectangular. The optimized θn� phase shifts (see
Appendix G) for (d) rectangular meshes are close to zero (cross
state) near the center as opposed to (e) permuting rectangular
meshes, which have a striped pattern (likely due to initialization).
Note that, by |·|, we refer to the elementwise norm.

The singular value decomposition (SVD) architecture
discussed in Refs. [22] and [6] consists of optical lossy
components flanked on both sides by rectangular meshes
and are capable of implementing any linear operation
with reasonable device input power. Note that with some
modifications (e.g., treating loss and gain elements like
nonlinearities in the procedure of Ref. [7]), SVD archi-
tectures can also be trained physically using in situ back-
propagation. We simulate the gradient-based optimization

-

FIG. 7. A comparison of test error in tensorflow for N =
128 between rectangular (RM), permuting rectangular (PRM),
and redundant rectangular (RRM) meshes for 20,000 itera-
tions, Adam update, learning rate of 0.0025, batch size of 256.
Ideal denotes Haar-initialized θn� with ε = 0. δN is the addi-
tional layers added in the redundant mesh. We stop the δN =
128 run within 4000 iterations when it reaches convergence
within machine precision. Redundant meshes with 32 addi-
tional layers converge better than permuting rectangular meshes
and, with just 16 additional layers, we get almost identical
performance.

of SVD architectures using automatic differentiation in
Appendix F.

VI. DISCUSSION

A. Haar initialization

For global optimization and robustness of universal pho-
tonic meshes, it is important to consider the required biases
and sensitivities for each mesh component. Implement-
ing any Haar random matrix requires that each component
independently follow an average reflectivity within some
tolerance. This requirement becomes more restrictive with
the number of input and output ports accessible by each
mesh component. For the rectangular mesh, this means the
center mesh components are close to a cross state and the
most sensitive.

In a Haar-initialized mesh, as shown in Fig. 2, the light
injected into a single input port spreads out to all waveg-
uides in the device uniformly regardless of N . This is a
preferable initialization for global optimization because
Haar random matrices require this behavior. In contrast,
when randomly initializing phases, the light only spreads
out over a limited band of outputs. This band gets relatively
small when the mesh gets larger, as shown in Fig. 9.

The average reflectivities given by Haar initializa-
tion may be useful for inverse design approaches [30]
for compact tunable or passive multiport interferometers.
The component tolerances may inform how robust phase
shifters need to be given error sources such as thermal
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cross talk [6]. The thermal cross talk might make it dif-
ficult to achieve required tolerances for devices interfering
up to N = 1000 modes that generally have phase-shift tol-
erances just above 10−2 radians. [The authors of Ref. [6]
propose that a standard deviation of approximately 10−3

might be possible with further circuit characterization,
which might be scalable based on Fig. 3(c).]

In our simulations in Sec. V, we assume that the con-
trol parameter for photonic meshes is linearly related to the
phase shift. However, in many current phase-shifter imple-
mentations, such as thermal phase shifters [6], the phase
is a nonlinear function of the control parameter (i.e., the
voltage) and has minimum and maximum values, unlike
the unbounded phase used in our optimization. In addi-
tion, like the Haar phase in our theory, the voltage acts
as the CDF for transmissivities in the physical device,
up to a normalization factor. Particular attention needs
to be given to phase uncertainty as a function of volt-
age, since the Haar random distribution of internal MZI
phases has small variance for large N , as we show in
Fig. 3(c). As mentioned in Sec. III, the ideal transmissivity-
voltage dependence with this consideration would be iden-
tical to the transmissivity vs Haar phase dependence in
Fig. 3(d).

B. Applications of mesh optimization

Meshes can be tuned using either self-configuration [11,
22] or global optimizations (gradient based [7] or deriva-
tive free [31]). The algorithmic optimizations proposed in
Refs. [11,22] assume that each component in the mesh
can cover the entire split ratio range, which is not the
case in the presence of 50:50 beam-splitter errors. This
ultimately leads to lower fidelity in the implemented uni-
tary operation, which can be avoided using a double-MZI
architecture [21,32] or a vertical layerwise progressive
algorithm [25]. We explore a third alternative to over-
come photonic errors; gradient-based global optimization
is model free and, unlike algorithmic approaches, can effi-
ciently tune photonic neural networks [7]. This model-free
property makes gradient-based optimization robust to fab-
rication error; we show in Fig. 6(a) that meshes with split
ratio error variances of up to σε = 0.1 can be optimized
nearly as well as a perfect mesh, particularly for permuting
rectangular meshes.

In the regime of globally optimized meshes, we pro-
pose two strategies to modify the rectangular architecture:
adding waveguide permutation layers and adding extra
tunable vertical MZI layers. Both approaches relax the
cross-state requirements on the MZIs and accelerate the
mesh optimization process. Nonlocal interference works
by allowing inputs that are far away physically in the mesh
to interact. These approaches are inspired by several recent
proposals in machine learning and coherent photonics to
design more error-tolerant and efficient meshes, many of

which use single layers of MZIs and nonlocal waveguide
interactions [23,26,33,34]; such designs can also be con-
sidered to be in the same class of permuting architectures
as our proposed permuting rectangular mesh. Adding extra
tunable vertical layers, as proposed in Ref. [24], simply
adds more tunable paths for the light to achieve a desired
output. As shown in Fig. 6, we achieve up to 5 orders of
magnitude improvement in convergence at the expense of
doubling the mesh size and parameter space.

Like permuting rectangular meshes, multiplane light
conversion successfully applies the nonlocal interference
idea for efficient spatial mode multiplexing [35,36]. In this
protocol, alternating layers of transverse phase profiles and
optical Fourier transforms (analogous to what our rect-
angular permutations accomplish) are applied to reshape
input modes of light [35,36]. A similar concept is used in
unitary spatial mode manipulation, where stochastic opti-
mization of deformable mirror settings allows for efficient
mode conversion [37]. Thus, the idea of efficient unitary
learning via a Fourier-inspired permuting approach has
precedent in contexts outside of photonic MZI meshes.

An on-chip optimization for multiplane light conver-
sion has been accomplished experimentally in the past
using simulated annealing [31]. The success of simulated
annealing in experimentally training small unitary pho-
tonic devices [31] (rather than gradient descent, as is used
in this work) suggests that there are other algorithms aside
from gradient descent that may effectively enable on-chip
training.

We propose that similar simulated annealing approaches
might be made more efficient by sampling Haar phases
from uniform distributions and flashing updates onto the
device. Similar derivative-free optimizations may also be
useful for quantum machine learning [38–40]. Whether
such approaches can compete with backpropagation for
classical applications remains to be investigated. For
experimental on-chip tuning, simulated annealing has the
attractive property of only requiring output detectors. For
practical machine-learning applications, however, there is
currently more literature for backpropagation-based opti-
mization. Furthermore, gradient-based approaches allow
for continuous control of phase shifters during the opti-
mization.

Our tensorflow simulations may be useful in the design
of optical recurrent neural networks (RNNs) that use uni-
tary operators parameterized by photonic meshes. Such
“unitary RNNs” (URNNs) have already been simulated
on conventional computers and show some promise in
synthetic long-term memory tasks [23,41]. Unitary RNNs
are physically implementable using a single mesh with
optical nonlinearities and recurrent optoelectronic feed-
back, suggesting that the architecture discussed in this
work is a scalable, energy-efficient option for machine-
learning applications. It is possible that some tunable fea-
tures such as the “bandedness” of unitaries implemented
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by rectangular MZI meshes can be useful (e.g., as an atten-
tion mechanism in sequence data) for certain deep-learning
tasks that use URNNs.

VII. CONCLUSION

The scalability of gradient-based optimization of Haar
random unitary matrices on universal photonic meshes is
limited by small reflectivities and MZI phase-shifter sen-
sitivities arising from the constraint of locally interacting
components. As shown in Sec. III, the required average
reflectivity and sensitivity for each MZI is inversely related
to the total number of inputs and outputs affected by the
MZI. If the tolerance requirements are not met by the
physical components, optimization algorithms will have
difficulty converging to a target unitary operator. As shown
in Sec. V for the case of N = 128, convergence via in
situ backpropagation is generally not achieved if phase
shifters are initialized randomly. However, Haar initializa-
tion can sufficiently bias the optimization for convergence
to a desired random unitary matrix, even in the presence of
significant simulated beam-splitter fabrication errors.

In Sec. IV, we propose adding extra tunable beam split-
ters or mesh nonlocalities to accelerate mesh optimization.
Naive (uniform random) initialization on a standard pho-
tonic mesh has difficulty learning random unitary matrices
via gradient descent. By introducing nonlocalities in the
mesh, we can improve optimization performance without
the need for extra parameters. A Haar-initialized redun-
dant architecture can achieve 5 orders of magnitude less
mean-square error for a Haar random unitary matrix and
decrease optimization time to such a matrix by at least
2 orders of magnitude, as shown in Fig. 7. Our findings
suggest that architecture choice and initialization of pho-
tonic mesh components may prove important for increas-
ing the scalability and stability of reconfigurable universal
photonic devices and their many classical and quantum
applications [3,5,6,12,22,38–40,42].
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APPENDIX A: SOFTWARE

To reproduce the results of this paper, the reader can
be directed to neurophox, an open-source Python pack-
age that implements the optimizations and simulations
of this paper in numpy and tensorflow. The exact
code used to generate the results is provided in the
neurophox-notebooks repository.

APPENDIX B: DERIVATION OF BEAM-SPLITTER
ERRORS

Unitary matrices generated by lossless MZIs are prone
to errors in beam-splitter fabrication. We introduce the
error ε to our expression derived in Eq. (1), which is twice
the displacement in the beam-splitter split ratio from 50:50.
Beam-splitter gates with error ε are defined as Bε = [ ρ iτ

iτ ρ ],
where ρ = √

(1 + ε)/2 and τ = √
(1 − ε)/2 are transmis-

sivity and reflectivity amplitudes respectively that result in
slight variations from a 50:50 beam splitter. We use this
error definition since it is a measurable quantity in the chip;
in fact, there are strategies to minimize ε directly [21].
The unitary matrix that we implement in the presence of
beam-splitter errors becomes

Uε := RφBε2RθBε1 ,

tε := |Uε,12|2 = |Uε,21|2,

rε := |Uε,11|2 = |Uε,22|2.

(B1)

If ε1 = ε2 = ε, which is a reasonable practical assumption
for nearby fabricated structures, then solving for tε in terms
of t gives

tε = 4|ρ|2|τ |2t

= 4t
(

1
2

+ ε

2

)(
1
2

− ε

2

)
(B2)

= t(1 − ε2).

Similarly, we can solve for rε :

rε = 1 − tε = r + t · ε2. (B3)

As we have discussed in this paper (and as we later
show in Fig. 12), photonic errors ε (standard deviation
of 0.1) can affect the optimized phase shifts for unitary
matrices. The above constraints on rε and tε suggest that
limited transmissivity is likely in the presence of fabrica-
tion errors, which can inhibit progressive setup of unitary
meshes [21,24]. However, we later show through tensor-
flow simulation that in situ backpropagation updates can
to some extent address this issue using a more sophisti-
cated experimental protocol involving phase conjugation
and interferometric measurements [7].

APPENDIX C: HAAR MEASURE

In this section, we outline a proof for the Haar measure
of a unitary matrix in terms of the physical parameters of a
photonic mesh to supplement our discussion of Haar phase
and the proof in Ref. [16]. The Haar measure for U(N ) can
be defined in two physical basis representations: the mea-
surement basis represents measurements after each MZI
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and the transmissivity basis represents the transmissivity
of each MZI.

To make our explanation simpler, we adopt the orthogo-
nalization protocol used in Ref. [11]. In this representation,
we define the triangular mesh UT as

UT =
N−1∏
m=0

U (N−m),

U(m) =
m−1∏
n=1

UN−n

(
θ

(m)
N−n, φ(m)

N−n

)
· Dm(γN−m+1),

(C1)

where Dm is a diagonal matrix representing a single-mode
phase shift at index N − m + 1.

The N operators U(m) represent the diagonal layers of
the triangular mesh and their role is to project inputs from
Hilbert space dimension from m to m − 1 recursively until
we reach a single-mode phase shift in U(1) = D1(γN ).
Our proof moves the same direction as Reck’s orthog-
onalization procedure; we iteratively solve for U(m) in
decreasing order from m = N to m = 1. For each layer
m, there are 2m − 1 complex hyperspherical coordinates
(m − 1 “amplitude” coordinates and m “phase” coordi-
nates). The first column vector of U can be recovered by
shining light (using a unit power P = 1) through the top
port of the layer (given by n = N − m + 1) and measur-
ing the output fields in the triangular mesh generated by
U(m), as shown in Fig. 8(b). As mentioned in Refs. [11]
and [22], progressive optimization moves in the opposite
direction; the desired output fields are shined back into

(a)

(b)

FIG. 8. Triangular mesh for N = 8 using (a) 2N − 3 vertical
layers �, showing the sensitivity index αn�, and (b) N diagonal
layers m, showing the transmissivity basis (tn in red) and the
measurement basis (xn in purple).

the device and the transmissivities t(m)
n and phases φ(m)

n for
each layer m (moving from N to 1) can be progressively
tuned until all the power lies in the top input port for that
layer.

The measurement basis is an unbiased Haar measure (as
shown in Ref. [16] using Gaussian random vectors) and
can be physically represented by the power xn measured
at waveguides n ≤ m − 1 due to shining light through the
top input port for that layer. Unlike the proof in Ref. [16],
we choose our constraint such that the input power P =
1 rather than P ∈ R+, which introduces a normalization
prefactor in our Haar measure by integration over all
possible P. [This prefactor is exactly

∫∞
0 dPe−PPm−1 =

(m − 1)!.] This allows us to ignore the power in the final
output port xN because energy conservation ensures that
we have the constraint xN = 1 −∑N−1

n=1 xn. Therefore, our
simplified Cartesian basis for each m is (ignoring the
normalization prefactor)

dμ(U(m)) ∝ dγN−m

m−1∏
n=1

dxn

m∏
n=1

dφn. (C2)

Now we represent the Cartesian power quantities xn explic-
itly in terms of the component transmissivities, which we
have defined already to be tn := cos2(θn/2). Using the
same convention as hyperspherical coordinates, we get the
following recursive relation for xn, as shown diagrammati-
cally by following the path of light from the top input port
in Fig. 8(b):

xn = (1 − tn)
n−1∏
k=1

tk. (C3)

Intuitively, Eq. (C3) implies that the power xn measured at
port n is given by light that is transmitted by the first n − 1
components along the path of light and then reflected by
the nth component. In other words, xn follows a geometric
distribution.

We can use Eq. (C3) to find the Jacobian J ∈ RN−1×N−1

relating the xn and the tn. We find that we have a lower
triangular matrix J with diagonal elements for n ≤ N − 1:

Jnn = ∂xn

∂tn
= −

n−1∏
k=1

tk. (C4)

We know J is lower triangular since for all n′ > n, Jnn′ =
∂xn/∂tn′ = 0 from Eq. (C3).

Since the determinant of a lower triangular matrix is
the same as the product of the diagonal, we can directly
evaluate the unbiased measure (off by a normalization
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constant) as

dμ(U(m)) ∝ dγN−m+1 detJ
m−1∏
n=1

dtn
m∏

n=1

dφn

= dγN−m+1

m−1∏
n=1

Jnn

m−1∏
n=1

dtn
m∏

n=1

dφn (C5)

∝ dγN−m+1

m−1∏
n=2

tm−n
n−1

m−1∏
n=1

dtn
m∏

n=1

dφn.

To get the total Haar measure, we multiply the volume ele-
ments for the orthogonal components dμ(U(m)). We get
from this procedure that the sensitivity index αn� = N − n
for a triangular mesh in Eq. (C5) (independent of �), which
can be seen using Fig. 8. We can express this Haar mea-
sure in terms of Qαn�

(tn�), the probability distribution for
the transmissivity, and Pαn�

(θn�/2), the probability dis-
tribution for the phase shift corresponding to that same
transmissivity, assuming appropriate choice n, � for the
triangular mesh:

dμ(U) =
N∏

n=1

dμ(U(n))

=
∏

n

dγn

∏
n,�

Qαn�
(tn�) dtn�dφn� (C6)

=
∏

n

dγn

∏
n,�

Pαn�

(
θn�

2

)
dθn�dφn�.

We can now normalize Eq. (C5) using the normalization
factor for P to get Qαn�

(tn�) and then substitute tn� =
cos2(θn�/2) to get our desired expression for Pαn�

(θn�/2):

Qαn�
(tn�) = αn�tαn�−1

n�

Pαn�

(
θn�

2

)
= αn� sin

(
θn�

2

)[
cos

(
θn�

2

)]2αn�−1

.
(C7)

Finally, we can recover the Haar phase parameter ξn� ∈
[0, 1] (i.e., the cumulative density function) in terms of
either tn� or θn�:

ξn� =
[

cos
(

θn�

2

)]2αn�

= tαn�
n� . (C8)

Finally, as explained in Ref. [16], we can use the Clements
decomposition [10] to find another labeling for αn� in a
rectangular mesh that gives probability distributions and
Haar phases in the same form as Eqs. (C7) and (C8)
respectively.

FIG. 9. Given η = 0.001, we compare bandsizes for rect-
angular [U ∼ UR(N , N )], permuting rectangular [U ∼ UPR(N )],
and redundant meshes [U ∼ UR(N , 2N )]. Permuting rectangular
meshes match the bandsize of Haar random matrices.

APPENDIX D: UNITARY BANDSIZES

We would like to quantify the bandedness of matri-
ces implemented by the meshes with randomly initialized
phases. We define the η bandsize as the minimum number
of matrix elements whose absolute value squared sums to
(1 − η)N . Note that our η-bandsize measurement is agnos-
tic of the ordering of the inputs and outputs and is therefore
agnostic to any permutations that may be applied at the end
of the decomposition. In photonics terms, if η = 0.001, let
ri measure the fraction of output waveguides over which
99.9% of the power is distributed when light is input into
waveguide i. The η bandsize is ri averaged over all i.
Sampling from our matrix distributions, we observe the
relationship between the bandsize (given η = 0.001) and
the dimension N in Fig. 9.

APPENDIX E: INTRODUCING PHOTONIC
ERRORS IN A REDUNDANT MESH

When photonic errors are added to the redundant mesh,
specifically the 256-layer mesh, we observe a slight
decrease in optimization performance in Fig. 10, similar
to what we observed for the rectangular and permuting
rectangular meshes in Fig. 7. This decrease in perfor-
mance, however, is less concerning considering that we
still achieve a mean-square error of around 10−5, suggest-
ing that RRM might be more robust to photonic errors even
during on-chip optimization.

APPENDIX F: PHOTONIC SINGULAR VALUE
DECOMPOSITION SIMULATIONS

We compare the simulated performance of such rect-
angular and permuting rectangular architectures in the
SVD configuration discussed in Refs. [22] and [6]. Such
architectures would allow one to perform arbitary linear
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-

FIG. 10. A comparison of test mean-square error for N = 128
between redundant rectangular meshes with error ε for a 256-
layer mesh for 20,000 iterations, Adam update, learning rate of
0.0025, and batch size of 256, simulated in tensorflow.

operations with a relatively small footprint and may have
some other useful dimensionality-reduction properties in
machine-learning contexts.

In SVD, we represent complex matrix Â ∈ CM × CN as
Â = Û�̂V̂ †, where �̂ is a diagonal matrix implemented
on-chip, with min(M , N ) single-mode gain or attenuating
elements, and Û, V̂ † are unitary matrices implemented in
a photonic mesh. While Â has 2MN free parameters, any
global optimization for a photonic SVD implementation
using rectangular meshes can have at most D = N (N −
1) + M (M − 1) + 2 min(N , M ) ≥ 2MN free parameters,
with equality when M = N . In the triangular architecture
discussed in Ref. [22], the total complexity of parame-
ters can be exactly D = 2MN when setting a subset of the
beam splitters to a bar state. In the case where the total
number of singular values for Â is S < min(M , N ), we get
D = 2S(M + N − S) tunable elements. Additionally, there
is an “effective redundancy” in that some vectors in U, V
are more important than others due to the singular values.

In our simulations, we investigate a SVD architecture
for A = U�V † for A ∈ CM × CN composed of the uni-
taries U ∈ CM × CM and V ∈ CN × CN. Note that such an
architecture is redundant when M �= N , so we focus on the
simple case of M = N = 64.

We define our train and test cost functions analogous to
the unitary mean-square error cost functions as

Ltest = ‖Â − A‖2
F

2‖A‖2
F

,

Ltrain = ‖ÂX − AX ‖2
F ,

(F1)

where Â = Û�̂V̂ † is defined in Sec. V.
We randomly generate A ∈ CN × CM by expressing

Ajk = a + ib, where a, b ∼ N (0, 1). The synthetic training

-

FIG. 11. A comparison of test mean-square error for N = 64
between SVD devices using rectangular (SVDRM) and permut-
ing rectangular (SVDPRM) meshes for 20,000 iterations, Adam
update, learning rate of 0.005, and batch size of 128, simulated
in tensorflow. Unless otherwise noted, the default setting is
Haar-random-initialized θn� with σε = 0.

batches of unit-norm complex vectors are represented by
X ∈ CN×2N.

Assuming a procedure similar to Ref. [7] can be used
in presence of gains and optimization, the permuting
rectangular mesh converges slightly faster but is signifi-
cantly more resilient to uniform random phase initializa-
tion compared to the rectangular mesh as shown in Fig. 11.
Both optimizations are minimally affected by beam-splitter
error, unlike what is seen in the unitary optimization case.

APPENDIX G: PERIODIC PARAMETERS

We comment on our reported values of θn� in the
checkerboard plots in Figs. 3, 6 (of the main text), and 12.
Since our simulated optimization does not have the explicit
constraint that θn� ∈ [0, π ], we report the “absolute θn�”
that obeys this constraint. This corresponds to the follow-
ing transformation (assuming θn� is originally between 0
and 2π ):

θn� →
{

θn� θn� ≤ π

2π − θn� θn� > π
. (G1)

Note that a treatment similar to that in Eq. (G1) can be
used to represent the Haar phase ξ ∈ [0, 1] in terms of a
“periodic” Haar phase ξ̃ ∈ [0, 2] with period 2:

ξ(̃ξ) =
{

ξ̃ ξ̃ ≤ 1
2 − ξ̃ ξ̃ > 1

. (G2)

Note that both ξ̃ and θn� can therefore be made to vary con-
tinuously from (−∞, ∞) with ξ̃ having a period of 2 and
θn� having a period of 2π . We map these periodic param-
eters to their half-periods according to Eqs. (G1) and (G2)
based on symmetry arguments.
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FIG. 12. Comparison of learned matrix errors and learned θn� weights after 20,000 iterations for the Adam update at learning rate
0.0025 and batch size 256 for the simple unitary network. We consider two meshes: (1) rectangular mesh (RM) and (2) permuting
rectangular mesh (PRM). We consider three conditions for each mesh: (1) ideal (with Haar random unitary initialization); (2) photonic
beam-splitter error displacement ε ∼ N (0, 0.01); (3) random initialization.
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FIG. 13. Comparison of learned, normalized θn� distributions
for N = 128 rectangular (RM) and permuting rectangular (PRM)
meshes with Pα(θ/2) PDFs for α = (N + 1)/3 = 43 (the aver-
age sensitivity index) and α = �N/(2 log N )� = 9 respectively.
Note that permuting meshes have a larger tolerance, which
eventually results in faster mesh optimization.

APPENDIX H: TRAINING SIMULATION
COMPARISONS

In Fig. 12, we compare the performance for our unitary
network experiment over our aforementioned conditions in
Sec. V. For each plot, we also have an associated video,
showing how the parameter distributions, estimates, and
errors vary during the course of the optimization, available
online. (See Ref. [43].)

There are several takeaways from these plots. First, the
reflectivities of the MZIs near the center of the mesh are
much smaller in the optimized rectangular meshes than in
the permuting rectangular meshes, which correspondingly
results in a smaller variance θn� for the rectangular mesh as
shown explicitly in Fig. 13. Second, the gradient descent

algorithm has a hard time finding the regime of Haar ran-
dom matrices after a uniform random phase initialization.
The values of θn� are much larger than they need to be even
100 iterations into the optimization. This is likely evidence
of a “vanishing gradient” problem when the mesh is not
Haar initialized. Finally, an important observation for the
meshes with beam-splitter error is that the θn�/2 distribu-
tion shifts slightly toward 0 in the rectangular mesh. This
is a consequence of the limits in reflectivity and transmis-
sivity in each MZI due to a beam-splitter fabrication error
as discussed in Sec. II.

Our simulated permuting rectangular implementation
uses the same layer definitions as defined in Eq. (11),
except the Pk’s with the most layers are in the center of
the mesh and the Pk’s with the fewest layers are near
the inputs and outputs of the mesh. In Fig. 4, P2 and
P3 would be switched, and for N = 128, the order is
[P2, P4, P6, P5, P3, P1]. We find this configuration to per-
form best for gradient-based optimization, although the
architecture in Eq. (11) gives improvements over the
rectangular mesh as well.

APPENDIX I: AN EQUIVALENT DEFINITION
FOR αn�

Let αn� be the sensitivity index for a MZI (“node”) at
(waveguide, layer) coordinates (n, �) in a local decompo-
sition for an N × N unitary operator. We define the “row
coordinate” or waveguide index n from the MZI’s oper-
ator Un coupling waveguides n and n + 1, and we define
the “column coordinate” or layer index m to be � = k + 1,
where k is the maximum number of operators applied to
a reachable input. (This is equivalent to the vertical layers
definition in Fig. 1.) The reachable inputs In� are the sub-
set of input modes affecting the immediate inputs of the
MZI at (n, �), and the reachable outputs On� are the subset
of output modes affected by the immediate outputs of the
MZI.

Following the definitions in Ref. [16], in the triangu-
lar scheme, αn� := N − n, and in the rectangular scheme,

FIG. 14. Rectangular decomposition for even (N = 8) and odd (N = 7) meshes, showing the diagonal x, y basis. Values for αn� are
shown in red above each MZI, with values for sx[y] shown in blue below. The critical boundaries of x, y = �N/2� separating the
different quadrants are drawn in green. (Boundaries are offset for visual clarity.)
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TABLE I. Induction on x and y within each of the quadrants in the mesh.

Quadrant Induction d(x) = · · · sx [y] = · · · |Ixy | = · · · |Oxy | = · · ·

x′ ≤ �N
2

�, y ′ ≤ �N
2

� x = x′ − 1 d (n, �) − 2 sx′ [y ′] |Ix′y ′ | − 2 |Ox′y ′ |
y = y ′ − 1 d (n, �) sx′ [y ′] + 2 |Ix′y ′ | − 2 |Ox′y ′ |

x′ ≤ �N
2

�, y ′ > �N
2

� x = x′ − 1 d (n, �) − 2 sx′ [y ′] |Ix′y ′ | − 2 |Ox′y ′ |
y = y ′ + 1 d (n, �) sx′ [y ′] + 2 |Ix′y ′ | |Ox′y ′ | − 2

x′ > �N
2

�, y ′ ≤ �N
2

� x = x′ + 1 d (n, �) − 2 sx′ [y ′] |Ix′y ′ | |Ox′y ′ | − 2

y = y ′ − 1 d (n, �) sx′ [y ′] + 2 |Ix′y ′ | − 2 |Ox′y ′ |
x′ > �N

2
�, y ′ > �N

2
� x = x′ + 1 d (n, �) − 2 sx′ [y ′] |Ix′y ′ | |Ox′y ′ | − 2

y = y ′ + 1 d (n, �) sx′ [y ′] + 2 |Ix′y ′ | |Ox′y ′ | − 2

αn� := d (n, �) + 1 − sn�[�], where d(n, �) is the number of
nodes on the diagonal (measured along paths of constant
n + �) containing a rotation parameterized by θn�, and sn� is
a sequence of decreasing odd integers d(n, �) ≥ kodd ≥ 1,
followed by increasing even integers 2 ≤ keven ≤ d(n, �),
as defined in Ref. [16]. We prove below that for both the
triangular and rectangular meshes, αn� = |In�| + |On�| −
N − 1.
Lemma 1: In the triangular mesh, αn� = |In�| + |On�| −
N − 1.

Proof: In the triangular mesh (shown for N = 8 in
Fig. 8), αn� := N − n, so we wish to show that N − n =
|In�| + |On�| − N − 1 or

2N + 1 = |In�| + |On�| + n. (I1)

Suppose Eq. (I1) holds for some arbitrary n′, �′ in the mesh,
such that 2N + 1 = |In′�′ | + |On′�′ | + n′. First, induct on n:
if we take n = n′ + 2 and � = �′, then |In�| = |In′�′ | − 1
and |On�| = |On′�′ | − 1. Next, induct on �: if we take
n = n′ and � = �′ + 2, then |In�| = |In′�′ | + 1 and |On�| =
|On′�′ | − 1. In both cases, Eq. (I1) holds.

Traversals by 2 along n or � from a starting node can
reach all nodes with the same parity of n and �, so we need
two base cases. Consider the apex node at n = 1, � = N −
1 and one of its neighbors at n = 2, � = N . The former has
|In�| = |On�| = N and the latter has |In�| = N and |On�| =
N − 1. In both cases, Eq. (I1) is satisfied, so the lemma
holds by induction. �

Lemma 2: In the rectangular mesh, αn� = |In�| + |On�| −
N − 1.

Proof: In the rectangular mesh, αn� := d (n, �) + 1 −
sn�[�], as defined in Ref. [16]. Define orthogonal axes x
and y on the lattice such that for a node at (n, �), trav-
eling in the +x direction gives the neighboring node at
(n + 1, � + 1) and traveling in the +y direction gives the
neighboring node at (n − 1, � + 1), as depicted in Fig. 14.
For even {odd}N , let the node at (n, �) = (1, 1) have
x = 1 and the node at (n, �) = (N − 1, 1{2}) have y = 1.
Then there is a one-to-one mapping such that (x, y) =
[(n + �/2), (� − n/2) + (�N/2�)], as shown in Fig. 14,
and it suffices to prove the lemma by induction in this
diagonal basis. �

Since d (n, �) is defined to be the length of a diagonal
along paths of constant n + �, it depends only on x, so we
rewrite d (n, �) �→ d(x) explicitly:

d(x) =
{

2x − 1 x ≤ �N
2 �

2(N − x) x > �N
2 � . (I2)

Similarly, since sn�[�] is enumerated along a diagonal, it
depends only on y, and we convert sn�[�] → sx[y] from
the sequence definition of Ref. [16] to an explicit lattice
form:

sx[y] =
{

2
(�N

2 � − y
)+ 1 y ≤ �N

2 �
2
(
y − �N

2 �) y > �N
2 � . (I3)

In this diagonal basis, we want to show that

d(x) + 1 − sx[y] = |Ixy | + |Oxy | − N − 1. (I4)

TABLE II. Induction on x or y across each of the borders of x, y = �N/2�.

x′ y ′ Induction d(x) = · · · sx [y] = · · · |Ixy | = · · · |Oxy | = · · ·

x′ = �N
2

� Any x = x′ + 1 d (n, �) − {+}1 sx′ [y ′] |Ix′y ′ | + 0{1} |Ox′y ′ | − 1{0}
Any y ′ = �N

2
� y = y ′ + 1 d (n, �) sx′ [y ′] + 1 |Ix′y ′ | |Ox′y ′ | − 1
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There are two boundaries at x, y = �N/2� which separate
four quadrants that must be considered, depicted by gray
lines in Fig. 14. We will induct on x and y within each
quadrant and then induct on x or y across each of the two
boundaries.

Suppose that Eq. (I4) holds for some arbitrary x′y ′
in the mesh, such that d

(
x′)+ 1 − sx′[y ′] = |Ix′y ′ | +

|Ox′y ′ | − N − 1. First, we induct on x and y within
each quadrant; the results are tabulated in Table I.
In every case, d(x) − sx[y] − |Ixy | − |Oxy | = d (n, �) −
sx′[y ′] − |Ix′y ′ | − |Ox′y ′ |, so Eq. (I4) remains satisfied.

Next, we induct across the x, y = �N/2� boundaries,
shown in Table II. Again, in every case, d(x) − sx[y] −
|Ixy | − |Oxy | = d (n, �) − sx′[y ′] − |Ix′y ′ | − |Ox′y ′ |, satisfy-
ing Eq. (I4).

Finally, note that the base case of the top left MZI at
(n, �) = (1, 1), (x, y) = (1, �N/2�) holds, with d(x) + 1 −
sx[y] = 1 = 2 + N − N − 1 = |Ixy | + |Oxy | − N − 1. This
completes the proof in the (x, y) basis, and since there
is a one-to-one mapping between (x, y) ↔ (n, �), αn� =
|In�| + |On�| − N − 1 holds by induction.
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