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Analysis of a Precambrian resonance-stabilized day length
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Abstract During the Precambrian era, Earth’s decelerating rotation would have passed a 21 h period
that would have been resonant with the semidiurnal atmospheric thermal tide. Near this point, the
atmospheric torque would have been maximized, being comparable in magnitude but opposite in direction
to the lunar torque, halting Earth’s rotational deceleration, maintaining a constant day length, as detailed
by Zahnle and Walker (1987). We develop a computational model to determine necessary conditions for
formation and breakage of this resonant effect. Our simulations show the resonance to be resilient to
atmospheric thermal noise but suggest a sudden atmospheric temperature increase like the deglaciation
period following a possible “snowball Earth” near the end of the Precambrian would break this resonance;
the Marinoan and Sturtian glaciations seem the most likely candidates for this event. Our model provides
a simulated day length over time that resembles existing paleorotational data, though further data are
needed to verify this hypothesis.

1. Introduction

At some point during the Precambrian, the Earth would have decelerated to the point where it had a rotational
period of 21 h, which would have been resonant with the semidiurnal atmospheric tide, with its fundamen-
tal period of 10.5 h. At this point, the atmospheric tidal torque would have been comparable in magnitude
but opposite in sign to the lunar oceanic torque, which could create a stabilizing effect on the day length,
preserving the 21 h day length until the resonance was broken, as first discussed in Zahnle and Walker [1987].

The question then arises as to how the Earth broke out of its resonance-stabilized day length of 21 h to
progress to its current day length of 24 h. In general, any sufficiently large sudden increase in temperature
will shift the resonant period of the atmosphere by thermal expansion (resulting in a change of atmospheric
column height) to a shorter period, as described in Figure 1, and could potentially break resonance, allowing
for Earth to decelerate to longer day lengths. (Alternately, resonance could also be broken by increasing the
lunar torque to surpass the peak atmospheric torque by the gradual change of the oceanic Q factor, defined
for an arbitrary system as 2𝜋 ⋅ total energy

energy dissipated per cycle
, though the very low necessary atmospheric Q factor for

resonance to form given the current oceanic torque makes this seem a less likely explanation and is not
explored here.)

This study develops a model of resonance formation and breakage that approximately outlines the necessary
conditions for this constant day length phenomenon to occur for an extended period of time. In our model
of atmospheric resonance, there are effectively three outcomes for this resonant phenomenon.

First, the Earth could have entered a stable resonant state which lasted for some extended period of time
before being interrupted by a global temperature increase, such as the deglaciation period following a pos-
sible “snowball Earth” event. Specifically, the Sturtian or Marinoan glaciations make good candidates for this
breakage event [Pierrehumbert et al., 2011; Rooney et al., 2014].

Second, the resonant stabilization could have never occurred, as the Q factor of the atmosphere could have
been too low for the magnitude of the atmospheric torque to exceed that of the lunar torque, a necessary
condition for a constant day length.

Third, the resonance could have been of no interest, as atmospheric and temperature fluctuations could have
been too high to allow a stable resonance to form for an extended period of time.

We discuss the plausibility of each of these scenarios in greater detail below and ultimately conclude that the
first scenario is the most likely to have occurred.
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2. Analysis of Atmospheric Resonance

The details of the atmospheric tide are quite complex, but the essential features can be appreciated with the
following toy model of the torque. (For interested readers, a more complete treatment of the atmospheric
tidal problem is given in Lindzen and Chapman [1969], most specifically in section 3.5.C.)

Given a fluid with column density 𝜌0 and equivalent column height h0 under gravitational acceleration g, with
Lamb waves of amplitude h ≪ h0 and wavelength 𝜆 ≫ h0, wave speed of

√
gh0, Cartesian spatial coordinates

of x, a forced heating term hf , and a damping factor Γ = 1
tQ

(with tQ defined as the total energy over power

loss of the system, such that Q = 𝜔0tQ), we start with the forced wave equation without drag (we will add
this later):

𝜕2h
𝜕t2

= gh0
𝜕2h
𝜕x2

+
𝜕2hf

𝜕t2
. (1)

We are interested in a heating term of the form F = F0 cos(2𝜔t + 2kx), with F0 as the average heating per
unit area, 𝜔 as the angular frequency, and k= 2𝜋

2𝜋R⊕
at the equator, with R⊕ the Earth’s equatorial radius. Thus,

for Cp as the specific heat at constant pressure and T0 as mean surface temperature, we have 𝜌0CpT0
dhf

dt
=

F0 cos(2𝜔t + 2kx) or

hf =
F0 sin(2𝜔t + 2kx)

2𝜌0CpT0𝜔
. (2)

Expressing h = A sin(2𝜔t + 2kx) and defining the equivalent height (which is currently 7.852 km [Zahnle and

Walker, 1987], with resonant effects occurring at about 10 km) as h0 ≡
4𝜔2R2

⊕

𝛽g
, where𝛽 is the relevant eigenvalue

to Laplace’s tidal equation. Using present values for h0, 𝜔, g, and k, we obtain 𝛽 ≈ 0.089, which agrees with

Lamb [1932], p. 560. Near resonance gh0 = 4𝜔2

𝛽k2 ≈ 4𝜔2
0

𝛽k2 , so we obtain via equation (1) that

A = −
𝜔F0

2𝜌0CpT0

(
𝜔2

0 − 𝜔2
) . (3)

At present day, 𝜔 < 𝜔0, making A negative, so the positive peak of A sin(2𝜔t + 2kx) is at 2𝜔t + 2kx = − 𝜋

2
. At

noon (t = 0), this occurs spatially at x =− 𝜋

4k
= − 𝜋R

4
or −45∘. This result determines the sign of the torque, as

the mass excess closer to the Sun exists such that it is being pulled in the prograde rotational direction. Note
that for period of time where the length of day is less than the resonant period of 21 h, that is, for 𝜔>𝜔0, the
resultant torque of A will exert a decelerating effect on Earth. However, at the point of resonance in question,
where the lunar torque is canceled by the atmospheric torque, 𝜔 < 𝜔0 by a small factor, corresponding to a
day length slightly above 21 h.

Addressing drag in our model, we assume that any excess velocity formed from the tidal acceleration in the
atmosphere is quickly dissipated into the Earth through surface interactions with a damping factor Γ, and
that this surface motion is relatively quickly dissipated into the rotational motion of the entire Earth, as given
by Hide et al. [1996], writing the dissipative Lamb wave forces, we have

𝜕v
𝜕t

= −g
𝜕h
𝜕x

− vΓ h0
𝜕v
𝜕x

= −𝜕h
𝜕t

+
𝜕hf

𝜕t
(4)

from which we obtain

A =
F0

𝜌0CpT0
⋅
(2𝜔 − iΓ)

(
4
(
𝜔2 − 𝜔2

0

)
+ 2i𝜔Γ

)
16

(
𝜔2 − 𝜔2

0

)2 + 4𝜔2Γ2
. (5)

In this model, the imaginary component ℑ(A) represents amplitude which would create a force with an angle
of 𝜋

2
with respect to the Sun, and thus does not exert any torque on Earth. We need only to concern ourselves

with the real part ℜ(A) then. Thus, we have

ℜ(A) =
F0

2𝜌0CpT0
⋅

4𝜔
(
𝜔2 − 𝜔2

0

)
+ 𝜔Γ2

4
(
𝜔2 − 𝜔2

0

)2 + 𝜔2Γ2
. (6)

Since we know the atmospheric torque to be directly proportional to the atmospheric displacement A, we
can use the fact that the present accelerative atmospheric torque, 2.5 × 1019 Nm, is approximately 1

16
that

of the present decelerative lunar torque, 4 × 1020 Nm, as given in Lambeck [1980], to scale the atmospheric
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Figure 1. Torque values for atmospheric torques assuming various Q factors compared to lunar torque. Torques are scaled at the 24 h endpoint such that they
have a value 1

16
that of the lunar torque, while the contour of the curve is determined by the A term derived in section 2. Note that the minimum value of Q

required to form a resonance (the value such that its magnitude exceeds the lunar torque) varies linearly with the lunar torque. During the Precambrian, when
the lunar torque was thought to be approximately a fourth of its current value [Zahnle and Walker, 1987], very low values of Q could have permitted resonance
to form.

torque along the curve followingℜ(A), giving the total atmospheric torque 𝜏atm(𝜔) as a function of the Earth’s
rotational frequency, as detailed in Figure 1.

For a sufficiently high atmospheric Q, we can see that starting from a short day length as the Earth decelerates
over time, increasing the length of day, the atmospheric torque increases until it eventually matches the lunar
torque, keeping the length of day constant at this stable equilibrium. While there are 2 day lengths at which
the torques are balanced, only the one at lower day length is stable. That is, infinitesimally perturbing the
system about the unstable equilibrium will cause the system to move away from equilibrium (to a longer
day length).

It should be noted that, to the authors’ knowledge, there is little consensus on a value of Q for the atmosphere,
though Lindzen and Blake [1972] put Q for a period of 10.5 h at about 30. Regardless, one can reasonably
assume it is within the range of 10–500, so we solve the problems in this paper using all possible values
of Q within this range. Ultimately, we establish a critical (relatively low) threshold, dependent on the lunar
torque, that Q must exceed for resonance to form—all systems with Q sufficiently past this threshold result in
similar results.

3. Estimation of Resonance-Breaking Conditions

Before solving the deglaciation time scale problem with a more complete computational model based on
the previous section, we detail a less sophisticated analytical solution to approximate the warming time scale
necessary to break the resonance. We then verify this with our computational model, noting that the key
features of the solution are present in both models, albeit at different values.

Given some increase in global temperature ΔT from an initial “average” temperature T0, we would expect a
corresponding increase in atmospheric volume. Since the atmosphere is horizontally constrained, this should
result in a nearly linear increase in the column height of the atmosphere. This, in turn, would change the
propagation speed of an atmospheric Kelvin wave, given by v =

√
gh0, and thus the resonance frequency

of the atmosphere. A decrease in global temperature increases the atmospheric resonant frequency (thus
decreasing the equilibrium length of day, shifting the curves to the left in Figure 1), while an increase in global
temperature decreases this frequency.

Suppose Earth had progressed to the stable equilibrium point in Figure 1. A large, fast (but noninstantaneous)
increase in global temperature could shift this stable equilibrium point to sufficiently lower day lengths such
that the unstable equilibrium point would be shifted past Earth’s day length, allowing the Earth to freely
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decelerate to longer day lengths. This change in temperature would need to be sudden enough that the
Earth’s rotation could not “track” this change. Additionally, decreasing temperature to its previous value
before the Earth has a chance to migrate away from the resonant zone could result in a recapture event.

Let us examine how fast this increase in temperature would need to occur. For a change in resonant frequency
to preserve resonance throughout the duration of the change, the rotational frequency of the Earth must track
the change in resonance frequency of the atmosphere, so d𝜔

dt
∼ d𝜔0

dt
. If we make the simplifying approximation

that the torque curve in Figure 1 has zero width (removing any “buffer zone” about the stable equilibrium),

then we require d𝜔
dt

= d𝜔0

dt
. Since the resonance frequency of the atmosphere is 𝜔0 =

√
𝛽gh0

2R⊕
, and h0 ∝ T

for temperature T , we can express 𝜔0(T) as 𝜔0 =

√
𝛽gh0⋅

T
T0

2R⊕
, with T0 the initial temperature. For any realistic

changes in atmospheric temperature, T(t)
T0

≈ 1. Denoting the time over which the temperature changes by an
amount ΔT as tw , we obtain

d𝜔0

dt
= dT(t)

dt
⋅

√
𝛽gh0 ⋅

T(t)
T0

2R⊕T(t)
≈

ΔT
√
𝛽gh0

4twT0R⊕

. (7)

Following the amplitude-scaling technique mentioned in the previous section, we know the maximum
angular acceleration of the Earth, or the fastest the Earth can “track” changes in 𝜔0, to be

d𝜔
dt

=
𝜏atm − 𝜏Moon

I⊕
=

𝜏Moon

(
A(𝜔max)

16⋅A
(

2𝜋
24h

) − 1

)

I⊕
, (8)

where 𝜔max is the rotational frequency associated with the global maximum of 𝜏atm, and 2𝜋
24h

is the current

rotational frequency of the Earth. Abbreviating A(𝜔max) as Amax and A( 2𝜋
24h

) as A24, we obtain that

ΔT
√
𝛽gh0

4twT0R⊕

=
𝜏Moon

I⊕

(
Amax

16 ⋅ A24
− 1

)
. (9)

Since Amax scales very nearly linearly with Q, we need only to attain one value of Amax and scale it accordingly
with Q. For example, at Q = 100, Amax ≈ 27.01 ⋅ A24, and at Q = 200, Amax ≈ 53.78 ⋅ A24. Using the value at
Q = 100, our expression for the minimum tw over which the temperature can change byΔT without breaking
resonance becomes

tw ≈
ΔTI⊕𝜔0

2T0𝜏Moon

(
27
16

Q
100

− 1
) . (10)

As shown in Figure 2, this expression indicates asymptotes for stability-preserving (Q, tw) pairs as Q → 60 and
as tw → 0. For a plausible atmospheric Q factor of 100 and a temperature change of ΔT = 10K, any significant
change in temperature faster than on the order of 108 years will break resonance.

Note that this model simply provides an upper bound on the time over which the temperature can be changed
while preserving resonance and an upper bound on the minimum threshold for Q for resonance to form.
This is due to the approximation that the curves in Figure 1 have a half-maximum width of zero and that
resonance will break Earth’s rotation at all deviates from the shifting equilibrium. In reality, the width of the
curves provides a buffer for the Earth; for example, very small changes of resonance frequency will not break
resonance, as the displacement is not sufficient to put the Earth outside of the stable zone, even if the change
occurs instantaneously. Thus, temperature changes will need to occur over a shorter tw than the values shown
in Figure 2 to actually break resonance, and resonance may form with lower values of Q. Additionally, the
current ratio of atmospheric to oceanic lunar torques is hard wired in this estimate, overstating the oceanic
torque and understating the strength of the resonance. These problems are more precisely addressed with
our computational model outlined in the next section. However, this simple model gives us a good idea of the
behavior we should expect: an asymptote at low Q, tw scaling approximately with 1

kQ−1
, and, for sufficiently

large ΔT such that the buffer zone is small in comparison to the induced change in resonant frequency, tw

scaling linearly with ΔT .
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Figure 2. The shortest possible stability-preserving warming time tw as a function of Q, as derived in section 3, with an
arbitrary choice of ΔT = 10 K. The asymptote arising at Q ≈ 60 is a result of no resonance-stabilizing effect occurring, as
the maximum value of 𝜏atm fails to surpass the lunar torque. As this simple model serves only as an upper bound for the
conditions required to break resonance, the asymptotic value of Q ≈ 60 and the time scale tw will be lower in the
computational model, but the general behavior described should still be present.

4. Computational Model

To determine the required conditions for a temperature change to break resonance, a computational model
was implemented in Python to numerically compute solutions to the model developed in section 2 over
the (ΔT ,Q, tw) parameter space. This generated a stability regime diagram depicting choices of (ΔT ,Q, tw)
resulting in stable and resonance-breaking (unstable) states, shown in Figure 3.

At the program’s core is a simulation function which iterates the Earth’s rotational frequency as a response to
lunar and atmospheric torque as global temperature rises from T0 −ΔT to T0 (with T0 being an average global
temperature of 287 K, though this precise value is unimportant) over an interval of tw years, simulating the
warmup following a period of low global temperatures.

In the absence of a reliable history of the lunar (oceanic) torque, the torque was simulated by taking a “base”
value of lunar torque, 𝜏0, corresponding to the present-day lunar torque (with 𝜏0 also acting as a scaling factor

for equation (6) to convert atmospheric oscillation magnitude to torque) and scaling it by 𝜏Moon ∝ 𝜏0 ⋅
r6
0

r6 ⋅ t
t0

,

where t0 is the age of the Earth, t is the progression of the simulation (from t = 0 to t = t0), and r0 and r are
the lunar orbital radii at times t0 and t, respectively. The (rather arbitrary) scaling by t

t0
is to loosely approx-

imate the suspected time evolution of oceanic Qoc (and thus 𝜏Moon) over the history of the Earth, as Qoc is
thought to have increased over time since the Precambrian. (However, as can be concluded from Figure 5,
above some critical lower bound, the actual scaling of the lunar torque has little impact on the evolution of the
entire system.)

A very small step size (50 years) was used to minimize numerical error, particularly while simulating at
very high Q values. The simulation function returned whether the result was stable (still trapped in a
resonance-stabilizing region) after a warmup period and a subsequent rest period to allow for 𝜔 to settle
had passed. To increase computational efficiency, only the stability-instability boundary (the surface shown
in Figure 3) was solved for using a multiprocessed binary search, such that the entire simulation ran in a more
feasible (n2 log n) time over the parameter space.

5. Results—tw Time Scale

A regime analysis was performed using our computational model to determine which combinations of atmo-
spheric Q, total temperature change ΔT , and warming time tw resulted in a break of resonance and which
preserved resonance.

As expected, for arbitrarily small tw , temperature changes greater than a critical thresholdΔT ≈ 5K will always
break resonance. Above ΔT ≈ 20, tw seems to scale linearly with ΔT . The required tw to preserve resonance
varies inversely with Q: with lower Q, temperature changes must take place over a larger period of time,
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Figure 3. The stability-instability boundary calculated along varying ΔT , Q, and tw values. At a fixed Q factor and
warming time (Q0, tw0), the resulting critical temperature change ΔTcrit represents the boundary between stable and
unstable resonances: any change ΔTcrit + 𝜖 over the same period of time tw0 will break resonance, while any change
ΔTcrit − 𝜖 over tw0 will preserve resonance. This can be visualized as a bent surface with the ΔT scale directed out of the
page; stable resonances lie below this surface, while unstable resonances lie above the surface. Higher Q factors permit
larger temperature changes per unit time (ΔT

tw
), as the system is more responsive to external torques than scenarios with

lower Q. Conversely, for a fixed critical temperature change ΔTcrit over a period of time tw , smaller values of tw require
the system to be more responsive to external torques to preserve resonance, requiring a larger Q. It should be noted
that, regardless of Q and tw , there exists a nonzero minimum value of ΔT0 required to break resonance (about 5.7 K in
the simulation).

as the Earth does not track changes in equilibrium as quickly. Additionally, the simulation reveals an asymp-
tote for tw near Q = 10, with Q factors below this value prohibiting resonance from forming in the first place.
All of these behaviors are consistent with the model developed in section 3.

The overall time scale for the required tw to break resonance was smaller (by about an order of magnitude)
than the rough estimation from section 3: for a ΔT of 10 K and a Q of 100, temperature changes occurring on
a time scale shorter than 107 years would be sufficient to break resonance, while for Q = 30, as suggested
by Lindzen and Blake [1972], changes shorter than 30 Myr break resonance, as shown in Figure 3. (It should
be noted that while these calculated values of tw are probably correct to within half an order of magnitude,
they are calculated with numerous assumptions and approximations; the relative behavior is more important.)
Note that the break in resonance is, of course, conditional on the temperature staying near this increased
temperature long enough for the Earth’s rotational velocity to decelerate sufficiently away from the area near
resonance—a process which would also take on the order of 107 years.

Thus, our simulations indicate that ignoring the possibility of recapture had the rotational velocity and
temperature of the Earth previously reached an equilibrium during a snowball Earth, virtually any realistic
subsequent deglaciation period would break resonance, as discussed further in section 8.
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Figure 4. Regime analysis of sinusoidally driven atmospheric temperature fluctuations across (half-wave) amplitude and
frequency for an initial phase of zero. Grey regions indicate resonance-preserving scenarios, while white regions break
resonance. The “noise” in the diagram, such as the small island of stability in the white region is due to the fact that
breakage also depends weakly on initial phase of the sinusoidal driver. However, phase was found not to change the
overall shape of the curve, aside from small changes near the edge, so the resilience of the atmospheric resonance to
realistic thermal noise is independent of phase.

6. Results—Effects of Thermal Noise on Resonant Stability

In addition to a systematic global climate change following a cool-constant-warm pattern like a snowball
event, the computational model outlined in section 4 was also further developed to test the resilience of
the resonance to random atmospheric thermal noise: higher-frequency fluctuations occurring at a variety of
amplitudes. The temperature was driven sinusoidally across a very large range of frequencies and amplitudes
encompassing all reasonable values for small-scale global temperature fluctuations. These results are detailed
in Figure 4. It was found that, for a sinusoidally driven global atmospheric temperature, the optimal fluctuation
period to break resonance—that is, the frequency whereby the required amplitude to break resonance is
minimized— was on the order of 10,000 years. However, the required thermal amplitude for this value was
approximately 20 K (half-wave amplitude, so a total temperature oscillation of 40 K), which is unrealistic, so
the possibility of resonant break due to random thermal fluctuations was discarded. Further evidence for
discarding this possibility is also provided by the results from the final figure in this paper.

7. Results—Simulated Length of Day Over Time

Finally, we used the model from the above two sections to create a simulation of Earth’s length of day over
its history, shown in Figure 5. Given the plausibility of a snowball event breaking resonance, we simulated a
sequence of four snowball events, corresponding in time and duration to an early Paleoproterozoic glaciation
discussed in Kirschvink et al. [2000] and three possible snowball Earth events during the late Precambrian:
the Kaigas, the Marinoan, and the Sturtian glaciations. It should be mentioned that the time and duration
(and recently, even the validity) [Rooney et al., 2015] of the Kaigas glaciation are debated; it is included at
920 Ma and given a short duration to simulate resonant recapture for demonstrative purposes. A variety of
base torque values (𝜏0) were chosen for simulation. Throughout the simulation, random atmospheric noise
was also simulated as the sum of several sinusoidal drivers with a maximum amplitude of approximately 5 K.
(This temperature curve is arbitrary and should not be interpreted as an actual thermal history of the Earth’s
atmosphere, which is not fully agreed upon; it was generated to demonstrate the main points of this study.)

Existing stromatolite data as compiled in Williams [2000] put the point of resonant breakage near 600 Ma,
while the data points at approximately 2 Ga, though even less reliable, could very tentatively establish a lower
bound on the formation of this resonance. After 600 Ma, stromatolite, coral, and bivalve data indicate that
the day length increases to its current 24 h day length quickly after a period of relatively constant day length
(though paleorotational data are nearly absent during most of this range, only available near the end points).
However, these data, particularly the early stromatolite data [Pannella, 1972], should not be taken too seri-
ously. [Zahnle and Walker, 1987] Paleontologists Scrutton [1978] and Hofmann [1973] also found these data to
be unreliable and unsuitable for precise quantitative analysis. Regrettably, no significant additional data have
emerged in the past several decades; further and more reliable data will be needed to test both Zahnle’s and
Walker’s hypotheses and our developments on mechanisms of breaking resonance.
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Figure 5. Day lengths with varying choices of 𝜏0 (shown in blue and green) and temperature values (red) over the lifetime of the Earth. Note that atmospheric
thermal noise does not influence the day length except very near resonance, and that the resonant effect remains unbroken through this noise until two
successive simulated snowball events at the end of the Precambrian 720 Ma and 640 Ma, corresponding to recent estimates of the Sturtian and Marinoan
glaciations [Rooney et al., 2014]. Recapture events can be seen at 870 Ma following the “Kaigas glaciation” and, for some values of 𝜏0, following a Paleoproterozoic
glaciation detailed in Kirschvink et al. [2000]. Approximate empirical day length data from a compilation in Williams [2000] are overlayed in black (error bars
included where present) and resemble the simulated results, though the reader should not take this data to be too reliable, particularly the data points prior to
600 Ma.

8. Conclusions

Our model supports the first scenario presented in section 1: the Earth entered a resonant state, perhaps at
about 2 Ga before present (though this value is highly uncertain, as it depends on an unknown evolution of
lunar oceanic Qoc for that epoch which is only crudely simulated in our model). The Earth then escaped reso-
nance at about 600 Ma. (this value also depends on Qoc), when resonance was broken by a global temperature
increase that is well explained as the deglaciation following a snowball event.

As shown in Figures 2 and 3, an asymptote dependent on lunar torque exists such that there is a critical
value of atmospheric Q below which resonance will not form. Near this value, the resonance is quite unstable.
Computationally, this asymptotic value was found to be very low: Q≈10 for the present lunar torque, and
possibly lower for some smaller estimated Precambrian lunar torques [Zahnle and Walker, 1987], making
resonance formation likely given an estimate of Q ≈30 from Lindzen and Blake [1972].

The minimum warming time tw required to break a resonance state was found to be within values that
would be broken by a deglaciation following a snowball event; for most values of Q, the deglaciation period
would need to be less than 107 years, easily within the tw estimates for snowball deglaciations presented by
Hofmann and Schrag [2002]. Snowball events with depressed, relatively stable temperatures lasting for a
period of around 107 years (also similar time spans as in Hofmann and Schrag [2002]) were found to provide
sufficient time for an equilibrium of 𝜔 and 𝜔0 to be reached such that the subsequent deglaciation breaks
resonance, though this value also depends inversely with the lunar torque, which is not accurately simulated
over time in our model.

The mid-Precambrian was lacking in global or near-global glaciations, with the possible exception of the
Huronian glaciation circa 2.4–2.2 Ga. [Melezhik, 2006], which likely occurred before resonance had formed.
Similar early Paleoproterozoic glaciation was argued to be a “snowball event” in Kirschvink et al. [2000];
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however, the parameters described in that study were simulated and resulted in resonant recapture. The fact
that there is little evidence of any potentially resonance-breaking glaciation for almost a billion years prior
to the Sturtian glaciation [Rooney et al., 2014] lends credence to the idea that the deglaciation of a snowball
Earth was the likely trigger that broke resonance after allowing it to persist for a length of time on the order
of a billion years.

It should be noted that while a reasonable choice of atmospheric and lunar variables makes the scenario
described in this study possible and likely, the paleorotational data available are not sufficient to confirm the
hypotheses of resonance formation or breakage. Further data are required; it is our hope that this work will
encourage developments in this area.

Appendix A: Source Code

All of the code used in this paper is available in an open-source repository at github.com/bencbartlett/
lengthofday or upon request from the first author.
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Erratum

In the originally published version of this article, several equations were incorrectly typeset. The following
have since been corrected and this version may be considered the authoritative version of record. In section

3, “Since the resonance frequency of the atmosphere is 𝜔0 =
√
𝛽gh0

2R⊕
, and h0 ∝ T for temperature T , we can

express 𝜔0(T) as 𝜔0 =

√
𝛽gh0
𝜖22

⋅ T
T0

2R⊕
, with” was changed to “Since the resonance frequency of the atmosphere

is 𝜔0 =
√
𝛽gh0

2R⊕
, and h0 ∝ T for temperature T , we can express 𝜔0(T) as 𝜔0 =

√
𝛽gh0⋅

T
T0

2R⊕
, with”. In equation 7,

“ d𝜔0

dt
= dT(t)

dt
⋅

√
𝛽gh0
𝜖22

⋅ T(t)
T0

2R⊕T(t)
≈ ΔT

√
𝛽gh0

4tw T0R⊕
.” was changed to “ d𝜔0

dt
= dT(t)

dt
⋅

√
𝛽gh0⋅

T(t)
T0

2R⊕T(t)
≈ ΔT

√
𝛽gh0

4tw T0R⊕
.”. In equation 9,

“
ΔT

√
gh0
𝛽

4tw T0R⊕
= 𝜏Moon

I⊕

(
Amax

16⋅A24
− 1

)
.” was changed to “

ΔT
√
𝛽gh0

4tw T0R⊕
= 𝜏Moon

I⊕

(
Amax

16⋅A24
− 1

)
.”.
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