
A “generative” model for computing
electromagnetic field solutions

Ben Bartlett ∗

Department of Applied Physics, Stanford University

Abstract

We present an unsupervised machine learning model for computing approximate
electromagnetic fields in a cavity containing an arbitrary spatial dielectric permit-
tivity distribution. Our model achieves good predictive performance and is over
10× faster than identically-sized finite-difference frequency-domain simulations,
suggesting possible applications for accelerating optical inverse design algorithms.

1 Introduction

“Inverse design” problems – computational design of structures by specifying an objective function –
are pervasive throughout physics, especially in photonics, where inverse design methods have been
used to design many highly compact optical components [1], [2]. Optical inverse design algorithms
involve simulating the electromagnetic fields within the device at each iteration of the design process,
typically by using the finite-difference frequency-domain (FDFD) method, and then optimizing the
design region using adjoint variable methods [3].

The iterative FDFD simulations, although exact, can be computationally expensive and scale poorly
with the design dimensions. For many applications, an approximate field solution is sufficient. A
machine learning model which could quickly compute approximate electromagnetic fields for a
dielectric structure could reduce this computational bottleneck, allowing for much faster inverse
design processes. [4]

In this paper, we present a machine learning model for computing approximate electromagnetic field
solutions. The model takes as its input a vector of dielectric permittivities at each point in space and
computes an equally-sized vector representing the approximate electric field amplitude at each point.
The model is trained using an entirely unsupervised approach which is loosely analogous in structure
to a generative adversarial network [5]. Our model achieves good predictive performance, generalizes
well to structures outside of its training distribution, and computes fields over 10× faster than an
identically-sized FDFD simulation.

2 Related work

We were able to find a small body of existing work related to this problem. Shan, et al. [6]
demonstrated a neural solver for Poisson’s equations using a purely-convolutional neural network.
Their model took as inputs a dielectric permittivity matrix and a matrix of pixel-wise distance to
the field source and was trained against labeled FDFD solutions. Our initial work followed their
approach, except applied to solving Maxwell’s equations, but we were unable to reproduce their
results.

Lagaris, et al. [7] presented a method similar to the one used in this paper to solve initial and boundary
value problems of a specific form using artificial neural networks. Two prior CS229 projects [8],
[9] applied this method to solve specific parameterizations of Poisson’s equations and studied its

∗SUNet ID: muon, email: benbartlett@stanford.edu

error properties. McFall and Mahan [10] expanded Lagaris’s method to solve problems over irregular
domain boundaries with mixed Dirichlet/Neumann boundary conditions.

3 Methods

3.1 Problem summary and approach

Our model computes approximate electromagnetic field solutions for a specific type of scenario,
formalized here. Suppose we have a perfectly reflective d-dimensional2 cavity of length L with
an electromagnetic source at the center. The cavity contains material forming an arbitrary spatial
distribution of dielectric permittivity ε(x). Discretizing the cavity into “pixels” of size δL, the
permittivity at each point in space can be expressed as a vector ~ε of size N = (L/δL)d. Given an
input permittivity vector ~ε and knowledge of the source location, the model outputs an identically-
sized vector ~Epred representing the electric field amplitude at each point in space. The cavity scenario
was chosen to impose Dirichlet boundary conditions of ~E = 0 at the cavity edges, ensuring the
electric fields are standing waves, and thus real up to a global phase.3

The model learns to produce realistic field solutions in an entirely unsupervised manner described
in Section 3.2 using a metric for physical realism we call the “Maxwell residual”, denoted as LM .
When trained to minimize the deviation from physical realism measured by LM , the model outputs
predicted fields which are very close to the “true” solutions obtained from an FDFD solver4, despite
never seeing them during training. Because of the entirely unsupervised training approach, we can
train our model on arbitrarily large (and even infinitely enumerable) datasets, as no data labeling is
required.

The structure of the model is loosely analogous to a generative adversarial network [5]. The first part
of the model is a “generator” which maps randomly generated input permittivities to field outputs as
G : ~ε (i) → ~E

(i)
pred. The second part is a “discriminator”5 which computes the Maxwell residual of the

predicted field as D : ~E
(i)
pred → L

(i)
M , providing a measure of how physically realistic the generator’s

outputs are. In both cases, the loss of the total model is L(i) = D(G(~ε (i))).

3.2 Unsupervised training with Maxwell residuals

Maxwell’s equations govern the dynamics and propagation of electromagnetic fields in materials and
form the foundation for classical electromagnetism. [13] In SI units, they are written as:

∇ · ~E =
ρ

ε
∇ · ~B = 0 (1)

∇× ~E = −∂
~B

∂t
∇× ~B = µ~J + µε

∂ ~E

∂t
,

where ~E, ~B are electric and magnetic fields at a given point in space and time, ε, µ are the permittivity
and permeability of the material, t is time, ρ is charge density, and ~J is current density. In a non-
magnetic, electrically neutral, linear material (such as many cases of interest), ρ = 0, µ = µ0, and
these equations can be simplified to:

2In our research for this project, we explored d = 1, 2, although we only have space to present d = 1 results;
2D simulations can be found in the project repository and in the poster.

3This was important as PyTorch [11] currently lacks complex number support.
4All FDFD simulations in this paper were computed using the angler FDFD package. [12]
5The biggest difference between the structure of our model and a GAN is that our “discriminator” is not

a trainable model: rather, it computes LM from a predicted field using a static transformation. Our model is
arguably generative, but not truly adversarial.

2

∇× ~E = −µ0
∂ ~H

∂t
(2)

∇× ~H = ε
∂ ~E

∂t
+ ~J, (3)

where ~H ≡ ~B/µ0 is the magnetizing field. In a steady-state frequency domain solution such as the
ones found with FDFD methods, ~E(t) = ~Eeiωt, so ∂t(·) → ω(·), where ω is frequency. We can
combine (2) and (3) to obtain an equation which any solution to Maxwell’s equations must satisfy:

[
(∇×∇×)− ω2µ0ε

]
~E − ~J = 0. (4)

If the electromagnetic field is polarized, say, with Ez polarization, then ~E = Eẑ and ~J = Jẑ at each
point in space. We can then “vectorize” this such that ~E and ~J are the electric field and free current
amplitudes in the ẑ direction and ~ε is the dielectric permittivity at each point in space. If we have a
model which takes in a permittivity distribution ~ε and a source term ~J and returns a predicted field
~Epred, then we use Eq. 4 to define the “Maxwell residual” LM as:

LM ≡
[
(∇×∇×)− ω2µ0~ε

]
~Epred − ~J. (5)

The Maxwell residual provides an element-wise measure of the physical realism of the predicted field
~Epred (a measure of how far the predicted solution is from satisfying Maxwell’s equations at each
point). If the model can sufficiently minimize LM , then it can produce solutions which approximately
satisfy Maxwell’s equations at each point, and thus are approximate global electromagnetic field
solutions for the system described by ~ε and ~J . This training does not require the model to ever see
the exact FDFD field solution (the outputs it attempts to replicate) and is thus unsupervised.

3.3 Model architecture and implementation

We found that when trained (or more precisely, overfit) to predict the field of a single permittivity
distribution ~ε, virtually any network architecture would allow the predicted field to converge to the
true field given enough training time. (For more on this, see Section 4.1.) The challenge was finding
a network architecture with the correct structure to capture the generalized transformation ~ε 7→ ~E
when trained on a large number of possible permittivities.

We tested many different network architectures for this project. Purely convolutional architectures,
like the ones used by Ref. [6], did not perform well and seemed incapable of capturing nonlocal
field dependence due to distant reflections with the cavity walls. Purely dense architectures, like the
ones used (for training single structures) by Refs. [7]–[9] did not seem to capture the physics of the
problem by generalizing well to structures very different from the training distribution.

Our final network architecture employed a hybrid convolutional / dense / deconvolutional approach
and is shown in Figure 1. The network starts with three convolutional layers, intended to capture
certain features of the permittivity input ~ε such as refractive index changes and layer thicknesses.
These feed into two dense layers, which allows the model to better account for nonlocal field
interactions. Finally, three transposed-convolutional layers expand the signal to the original input size,
providing the prediction for ~E. We found that the performance of the model was relatively insensitive
to the choice of kernel size and number of convolutional/deconvolutional layers in excess of 3.

During training, the network outputs the Maxwell residual LM (~E). Dropout layers with p = 0.1
and ReLU activations are present after every layer except the last one. Our model was imple-
mented using PyTorch [11], and the code is available at https://github.com/bencbartlett/
neural-maxwell.

3

https://github.com/bencbartlett/neural-maxwell
https://github.com/bencbartlett/neural-maxwell

Figure 1: Final architecture for the neural Maxwell solver. The model takes as inputs a vector
of permittivities ~ε. Three successive convolutional layers (kernel sizes: 5, 7, 9, channels: 32, 64,
128) output into two appropriately-sized dense layers. This outputs into three successive transposed-
convolutional layers (kernel sizes: 9, 7, 5, channels: 128, 64, 32), expanding the signal to the original
dimensions of ~ε. Dropout layers with p = 0.1 and ReLU activations follow all but the last layer.

4 Experiments

4.1 Fitting to single ~ε

As an initial experiment, we trained the model to predict the field of only a single ~ε input using
the Maxwell residual method described in Section 3.2. The evolution of the predicted field as the
network is trained on a sample permittivity is shown in Figure 2. (An animated version of this figure
is available online at https://gfycat.com/TestyWanIsopod.) We ran this procedure dozens of
times, varying network architectures and permittivity, and found that the model would eventually
converge (with loss less than 10−7) to the exact FDFD field solution for virtually all ~ε and all network
architectures given sufficient training time. This experiment was not terribly useful in terms of
obtaining practical speedup for EM simulation problems, as the typical time to train to convergence
exceeded the time to run an equivalent FDFD simulation by a factor of about 100. However, from
an academic standpoint, it is an interesting method to numerically solve Maxwell’s equations, and
looking at the time to convergence for a single ~ε provided some insight into prototyping optimal
network architectures for the main experiment detailed in Section 4.2.

Figure 2: Evolution of the predicted field as the network is trained on a single permittivity input. The
top panel of each image depicts the permittivity at each point (grey), the “true” electric field from
an FDFD simulation (blue) and the predicted field at the given iteration (orange). The bottom panel
depicts LM at each iteration. An animated version of this figure (which is more informative and which
we encourage readers to view) is available online at https://gfycat.com/TestyWanIsopod.

4.2 Training on permittivity datasets

For the main experiment in this paper, we trained a model with the architecture described in Figure 1
on a large dataset of 106 randomly-generated permittivities. Each~ε sample represented the permittivity
formed by a random number of material layers, each of random thickness, of alternating silicon and
vacuum. The model was trained using an Adam optimizer [14] with batch size 200 and learning rate
5× 10−6 on an NVIDIA Tesla K80 until convergence (after about 8 hours and 400 epochs, with a
final average loss of 8× 10−4).

To evaluate the results of the trained model, a test set of 104 new permittivity samples was generated
using the same generation procedure. The model was run on each of these inputs, the loss for each
sample was calculated (average loss of 8.8× 10−4), and the results were sorted from best to worst.
Example good (best 10/10000), typical (middle 10/10000), and bad (worst 10/10000) field predictions
from the test set are shown in the first three panels of Figure 3. For each sample, the forward-pass
time was recorded and compared to the FDFD simulation time; the trained model takes an average
of 1.2ms to compute predicted fields – over 10× faster6 than the 14ms equivalent FDFD simulation
time.

6The model performs even faster per sample if it evaluates batched inputs.

4

https://gfycat.com/TestyWanIsopod
https://gfycat.com/TestyWanIsopod

Finally, we tested the model’s capability to generalize to inputs outside of the training distribution –
that is, permittivities representing a different set of structures than the ones generated for the training
and test sets. As an example, the predicted field amplitudes for a sample ~ε where each point in space
has a permittivity value randomly chosen between vacuum and silicon is shown in the last panel of
Figure 3. (This ~ε is pathological and would not represent any type of device which could be easily
fabricable, but illustrates the generalization capabilities of the model.)

Figure 3: Permittivities and predicted fields for samples in the test set with good, typical, and poor
performance. The lower right panel shows the predicted fields for a uniform-random permittivity
input from a distribution the model was not trained on.

5 Discussion

In this paper, we presented a machine learning model capable of computing approximate solutions to
Maxwell’s equations over an arbitrary dielectric permittivity in a cavity. The model was trained using
an unsupervised approach where it learned to minimize the “Maxwell residual” of its predicted fields,
thereby maximizing the physical realism of the solutions. Our model demonstrates good predictive
performance and is over 10× faster than comparable FDFD simulations, suggesting applications for
accelerating optical inverse design algorithms.

For future work, we would like to implement a complex-valued model to solve the more general
problem of predicting fields outside of a cavity environment. Our choice of the cavity problem was
driven primarily by PyTorch’s lack of support for complex tensors. (In the project repository, we
have an initial implementation of this which explicitly parameterizes <(~E) and =(~E), although
this approach was only mildly successful.) We would also like to explore using our model for
dimensionality reduction, especially for 2D and 3D problems. We were able to achieve a 1:16
dimensionality reduction with our model applied to a 32× 32 2D input of permittivities by adjusting
the network parameters to force a 64-value chokepoint in the middle dense layers of the network.
(This figure is present in the poster but omitted here due to length constraints.) This could force the
model to learn more efficient representations of the relationships between permittivities and fields.

5

Acknowledgements

We would like to thank Shanhui Fan, Sunil Pai, and Tyler Hughes for several illuminating discussions
relating to this work.

Source code

All source code used for this paper is available at https://github.com/bencbartlett/
neural-maxwell. Trained model parameters were too large to include in the repository but are are
available upon request.

References

[1] A. Y. Piggott, J. Lu, T. M. Babinec, K. G. Lagoudakis, J. Petykiewicz, and J. Vučković, “Inverse
design and implementation of a wavelength demultiplexing grating coupler,” Scientific Reports,
2014, ISSN: 20452322. DOI: 10.1038/srep07210.

[2] L. Su, A. Y. Piggott, N. V. Sapra, J. Petykiewicz, and J. Vučković, “Inverse Design and
Demonstration of a Compact on-Chip Narrowband Three-Channel Wavelength Demultiplexer,”
ACS Photonics, 2018, ISSN: 23304022. DOI: 10.1021/acsphotonics.7b00987.

[3] T. Hughes, G. Veronis, K. P. Wootton, R. Joel England, and S. Fan, “Method for computation-
ally efficient design of dielectric laser accelerator structures,” Optics Express, vol. 25, no. 13,
p. 15 414, Jun. 2017, ISSN: 1094-4087. DOI: 10.1364/OE.25.015414. [Online]. Available:
https://www.osapublishing.org/abstract.cfm?URI=oe-25-13-15414.

[4] J. Peurifoy, Y. Shen, L. Jing, Y. Yang, F. Cano-Renteria, B. G. DeLacy, J. D. Joannopoulos,
M. Tegmark, and M. Soljačić, “Nanophotonic particle simulation and inverse design using
artificial neural networks,” Science Advances, vol. 4, no. 6, pp. 1–8, 2018, ISSN: 23752548.
DOI: 10.1126/sciadv.aar4206.

[5] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville,
and Y. Bengio, “Generative Adversarial Networks,” Jun. 2014. [Online]. Available: https:
//arxiv.org/abs/1406.2661.

[6] T. Shan, W. Tang, X. Dang, M. Li, F. Yang, S. Xu, and J. Wu, “Study on a Poisson’s Equation
Solver Based On Deep Learning Technique,” Dec. 2017. [Online]. Available: http://arxiv.
org/abs/1712.05559.

[7] I. E. Lagaris, A. Likas, and D. I. Fotiadis, “Artificial neural networks for solving ordinary and
partial differential equations,” IEEE Transactions on Neural Networks, 1998, ISSN: 10459227.
DOI: 10.1109/72.712178.

[8] M. Chiaramonte and M. Kiener, “Solving differential equations using neural networks,” PhD
thesis, Stanford University, 2013.

[9] S. H. Kolluru, “A Neural Network Based ElectroMagnetic Solver,” PhD thesis, Stanford
University, 2017.

[10] K. S. McFall and J. R. Mahan, “Artificial neural network method for solution of boundary
value problems with exact satisfaction of arbitrary boundary conditions,” IEEE Transactions
on Neural Networks, 2009, ISSN: 10459227. DOI: 10.1109/TNN.2009.2020735.

[11] Facebook AI Research, “PyTorch: tensors and dynamic neural networks in Python with strong
GPU acceleration,” 2018. [Online]. Available: https://pytorch.org/.

[12] T. W. Hughes, M. Minkov, I. A. D. Williamson, and S. Fan, “Adjoint method and inverse
design for nonlinear nanophotonic devices,” Nov. 2018. [Online]. Available: https://arxiv.
org/abs/1811.01255.

[13] J. D. Jackson, Classical Electrodynamics, 3rd Edition. 1998, ISBN: 047130932X. DOI: 10.
1119/1.19136.

[14] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,” Dec. 2014. [Online].
Available: https://arxiv.org/abs/1412.6980.

6

https://github.com/bencbartlett/neural-maxwell
https://github.com/bencbartlett/neural-maxwell
https://doi.org/10.1038/srep07210
https://doi.org/10.1021/acsphotonics.7b00987
https://doi.org/10.1364/OE.25.015414
https://www.osapublishing.org/abstract.cfm?URI=oe-25-13-15414
https://doi.org/10.1126/sciadv.aar4206
https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/1406.2661
http://arxiv.org/abs/1712.05559
http://arxiv.org/abs/1712.05559
https://doi.org/10.1109/72.712178
https://doi.org/10.1109/TNN.2009.2020735
https://pytorch.org/
https://arxiv.org/abs/1811.01255
https://arxiv.org/abs/1811.01255
https://doi.org/10.1119/1.19136
https://doi.org/10.1119/1.19136
https://arxiv.org/abs/1412.6980

	Introduction
	Related work
	Methods
	Problem summary and approach
	Unsupervised training with Maxwell residuals
	Model architecture and implementation

	Experiments
	Fitting to single
	Training on permittivity datasets

	Discussion

