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Abstract

As progress in traditional electronic computing systems approaches fundamental physical limits, we

must explore alternative approaches for further growth in computing power. Photonics is a promising

hardware platform for many emerging computing technologies, including optical neural networks and

quantum computation. In this thesis, I will present several novel designs for light-based computing

systems. First, I will discuss several advancements we have made in nanophotonic neural networks,

including design and experimental realization of electro-optic nonlinear activation functions, and

architectures and initialization routines for programmable linear optical devices. Next, I will present

two novel schemes for quantum information processing: a programmable photonic gate array which

can be dynamically reconfigured to prepare any quantum state, and an architecture for an optical

quantum computer which can perform any calculation using only a single directly controllable qubit.

Finally, I will discuss a design for a photonic quantum emulator capable of simulating the dynamics

of a broad class of Hamiltonians in lattices with arbitrary dimensions and topologies.
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loss during training. (d) Confusion matrix, specified in percentage, for the trained
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4.1 The architecture for the quantum programmable gate array shown at various levels

of detail. (a) Physical layout of a four-qubit QPGA with a depth of four layers. Each

logical qubit is path-encoded by a single photon in a pair of waveguides, with the

parity of which waveguide represents |0⟩ and |1⟩ depending on the parity of the qubit

index. (b) A quantum circuit diagram depicting the logical representation of the

operator performed by the QPGA in the first panel. The “switch” symbols between

two-qubit operations indicate that the connectivity of the gates can be reconfigured

without changing the physical chip architecture. Solid control dots indicate cσz, while

open dots indicate cσz. (c) A single unit cell within the lattice. The ζ, ξ, θ, ϕ phase

shifters are continuously variable trainable parameters, while η = 0, π2 determines the

connectivity of the cσz gates between neighboring qubits. The pink dots represent

quantum emitters embedded a distance a between two dichroic reflectors, depicted

as blue and red rectangles, which selectively reflect light at frequencies ω and ω′,

respectively. The delay lines are matched in length to ω′ and terminate in reflectors.

(d) Four-level energy structure of the quantum emitters embedded in the waveguides. 57
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4.4 Optimization of a quantum circuit to prepare a four-qubit GHZ state. (Top) Evolution

of the output state |ψ̃⟩ over the course of training. The vertical axis represents the

magnitude of the projection ⟨ψ̃|bj⟩ of the output state onto each computational basis

state |bj⟩. (Bottom) Fidelity between the output state and target state over the course

of training, reaching a maximum value of F ≈ 99.94%. The shared horizontal axis

indicates iterations during training. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.5 Training a 20-layer QPGA to prepare an ensemble of randomly sampled four-qubit

states. Fidelities between the output and target states are shown over the course of

each optimization. The average fidelity at the end of training is F = 99.2%. . . . . . 72
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4.6 Optimization of a 20-layer QPGA to prepare a quantum Fourier transform on the

four input qubits. (Top) The operators Ũi implemented by the QPGA after i training

epochs. Each square array represents the magnitude (relative to the maximum ele-

ment) and phase of the projection of the operator onto the lexicographically-ordered

computational basis states, encoded in the respective size and hue of the squares.

The final Ũ50 is visually indistinguishable from Û . (Bottom) Fidelity between the

implemented and target operator over the course of training. The final fidelity is

F = 99.94%. An animated version of this figure showing the training of the imple-

mented operator can be found in the supplementary materials. . . . . . . . . . . . . 73

4.7 Required circuit depths to implement a quantum Fourier transform for a range of

qubit numbers using explicit decomposition (top solid line, blue) and using gradient-

based decomposition (bottom solid line, orange) which achieves a fidelity above 99.9%.

Relative compactness of explicit vs. gradient-based decompositions is depicted by the

red dotted line. The approximate decompositions are significantly more compact than

the explicitly constructed circuits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.1 The photonic quantum computer architecture described in this work. (a) The phys-

ical design of the device. Photonic qubits counter-propagate through a fiber storage

ring and optical switches can selectively direct photons through a scattering unit to

interact with an atom in a cavity which is coherently controlled by a laser. (b) The

energy structure of the atom: Ω1 is resonant with the cavity mode and photon car-

rier frequency, while Ω0 is far-detuned. (c) Bloch sphere depiction of the state of a

photonic qubit in the {|⟳⟩ , |⟲⟩} basis and an operation applied by one pass through

the scattering unit. The rotations about ẑ by fixed angles (grey) are applied by the

phase shifter and beamsplitter, while the rotation about ŷ by a controllable angle θ

(solid red) is applied to the atom using the cavity laser. Projectively measuring the

atom teleports this rotation onto the photon, but may overshoot the target angle θ by

π (dotted red) depending on the measurement outcome m. This operation is a uni-

versal single-qubit primitive: by composing several of these operations and adapting

subsequent rotation angles based on measurement outcomes, arbitrary single-qubit

gates can be deterministically constructed. See Supplement 2 for a visualization of

the gate mechanism. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.2 Quantum gate sequence corresponding to one pass of a photon through the scattering

unit. The projective measurement teleports the rotation applied to the atomic qubit

onto the photonic qubit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
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5.3 Conceptual illustration of compiling a quantum circuit into an instruction sequence

to be performed on the device. (a) A generic target quantum circuit. (b) Decom-

position into an equivalent circuit of single-qubit and cσz gates. (c) The circuit is

further decomposed into a sequence of scattering interactions. This sequence can be

assembled on a classical computer into an instruction set with six distinct primitives

which correspond to physical actions. (d) The controllable elements of the quantum

device are the optical switches, cavity laser, and atomic state readout. . . . . . . . . 83

5.4 (a) Output pulse shapes for |g0⟩ and |g1⟩ initialization when a cavity with coopera-

tivity C = 180 is driven by a Gaussian input pulse. The inset highlights the behavior

near maximum: the |g0⟩ output pulse is delayed and the |g1⟩ output has reduced am-

plitude. (b) Shape infidelity and photon leakage probability as a function of cavity

cooperativity. Solid blue lines show the pulse shape infidelity when the reference pulse

is delayed by ∆t01/2. (c) Estimated single-qubit circuit depth achievable while main-

taining > 50% fidelity as a function of cavity cooperativity and photon attenuation

per cycle, assuming one scattering interaction every cycle and no error correction.

Dotted lines show various experimentally demonstrated cooperativity values in simi-

lar cavity systems. Lines 1-10 correspond respectively to Refs. [89], [55], [214], [152],

[72], [161], [53], [137], [45], and [236]. . . . . . . . . . . . . . . . . . . . . . . . . . . 86
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6.1 Architecture for the programmable photonic quantum emulator described in this chap-

ter. (a) The physical design of the device. Classical laser pulses or single-photon

pulses propagate clockwise through a fiber storage ring. A programmable Mach-

Zehnder interferometer connects the storage ring to a register loop which has an

optical path length ∆x equal to the length of a single time bin. By setting the phase

shift values in the MZI, the hopping coefficients and phases κmn, αmn can be pro-

grammatically adjusted. Photons have energy µ ≡ ℏω0, and by using a χ(3)-nonlinear

fiber, a nonlinear interaction potential U can be emulated. (b) An example 2D grid

lattice to be emulated by the device. Node labels correspond to photon pulse indices,

and the device as shown in panel (a) is in the process of constructing the orange edge

connecting nodes 1 and 2 with (κ1,2, α1,2). (c) Illustration of a single clock cycle

of the emulator constructing the interaction (κ1,2, α1,2) in three steps. First, phase

shifters are set to transfer photon 1 into the register. Second, photon 1 is interacted

with photon 2 using θ = 2κ1,2 and ϕ = α1,2. Third, the pulse (which now may contain

a mixture of photons 1 and 2) is returned to its original time bin. (d) The evolution

of the state of the device while emulating a tight-binding Hamiltonian over the lat-

tice shown in panel (b). The bottom panel depicts the exact evolution of the target

Hamiltonian over time, while the top panel shows the state of the emulator at each

clock cycle, including register swaps and intermediate states between full iterations.

A large value of κ = 0.2 was used for visual clarity, but more accurate results may be

obtained by using smaller κ and running the emulation for a commensurately longer

wall-clock time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
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6.2 (a) Lattice diagram for a two-legged synthetic Hall ladder emulated with the device.

By varying the inter-rung hopping phases α, an effective controllable magnetic field

can be induced in the lattice. (b) Band structure of the system computed by diago-

nalizing the Hamiltonian for the exact case (top panels) and as emulated in the device

(bottom) in the presence (left) and absence (right) of a synthetic magnetic field. Pro-

jection operators to the left and right nodes are color coded for each eigenstate. In all

cases the Hamiltonian is represented in real space; for each eigenstate with eigenvalue

E, we compute k with peak detection of its Fourier transform. This results in small

numerical instabilities which are present in both the exact and emulated cases. Other

parameters for this simulation: κ = 0.1, α = 2π/3 or α = 0, µ = U = 0, number of

lattice sites D = 1000, number of bosons N = 1. (c) Experimental signature for the

propagation of chiral edge currents on the left leg of the ladder. A Gaussian input

state is created with some initial k = ±0.1 by exciting multiple time bins with a

phase difference between bins. When the gauge field is turned off (α = 0), the pulses

propagate in opposite directions, but when the field is turned on (α = 2π/3), the

motion in one direction is inhibited. . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.3 Emulated evolution of (a) a two-photon state and (b) a single-photon state in a

1D lattice as (c) time-dependent hopping phases are varied. The changing hopping

phases introduce a changing gauge potential which causes the two-photon state to

experience an effective electric field. The single-photon state is unaffected by this field. 97

6.4 Emulation of a tight-binding Hamiltonian over a four-dimensional tesseract. (a) Pro-

jection of the tesseract graph which defines the lattice. (b) Evolution of a two-photon

state exhibiting oscillations between time bins 0 ↔ 10 and 5 ↔ 15. Parameters:

κ = 0.01, α = µ = U = 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
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rectangular (SVD-RM) and permuting rectangular (SVD-PRM) meshes for: 20000

iterations, Adam update, learning rate of 0.005, batch size of 128, simulated in

tensorflow. Unless otherwise noted, the default setting is Haar random initialized
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A.5 Comparison of learned matrix errors and learned θnℓ weights after 20000 iterations
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Haar random unitary initialization), (2) photonic beamsplitter error displacement
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A.6 Rectangular decomposition for even (N = 8) and odd (N = 7) meshes, showing the

diagonal x, y basis. Values for αnℓ are shown in red above each MZI, with values
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ω0
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across 250 values of σ and plot the maximum, minimum, and average infidelity (de-
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correspondence of physical and logical circuit elements. (a) The physical design of

the device, with annotations indicating quantum operations implemented by physical

circuit elements. (b) The energy structure of the atom: Ω1 is resonant with the cavity

mode and photon carrier frequency, while Ω0 is far-detuned. (c) Gate diagram of the
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the atomic qubit and a projective measurement of the atomic state is performed. The

final output state |ψout⟩ is Zπ
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B operations

correspond to a return trip of the photon from the scattering site to the ring and

back, passing through the beamsplitter and phase shifter twice. . . . . . . . . . . . . 131

C.3 Construction of a cσz gate with three scattering interactions using a measurement-

based approach. After measurement, the left and right circuits are equivalent. The

single-qubit gates on either side of cσz can be removed by absorbing them into the

preceding/subsequent single-qubit gates as described above. . . . . . . . . . . . . . . 132
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Chapter 1

Introduction

Technological progress in this century has been inextricably linked to the continual advancement

of computing power. For the last five decades, computing power has roughly doubled every two

years, largely enabled by shrinking transistor sizes. This sustained growth in compute capacity has

enabled incredible technological developments, and today computers routinely play complex games,

generate art from written descriptions, and drive cars.

However, this progress is unsustainable, and traditional electronic computing systems are ap-

proaching fundamental physical limits. Transistors are now shrinking to sizes comparable to silicon

atomic lattice spacings. If we continue to shrink transistors further, quantum tunneling will become

an exponentially dominating source of errors. Additionally, clock frequencies in processors have

stagnated in the last decade due to thermal constraints, which are primarily a function of switching

energy. This, too, will eventually hit a fundamental limit, as there is a thermodynamic cost for the

change in entropy of irreversibly processing one bit of information. [129]

As progress in traditional electronic computing systems approaches these fundamental physical

limits, we will need to explore alternative approaches for further growth in computing power.

Photonics is a promising hardware platform for many emerging computing technologies, including

neural network accelerators and quantum information processing. The physics of light is fundamen-

tally linear, which makes photonics ideal for performing linear algebra tasks for machine learning

applications. Additionally, optical computing systems can perform unitary, fully reversible compu-

tations which preserve entropy, so in principle they can be done for no energy cost while producing

no heat. Optics is also very appealing for quantum computers, as photonic qubits have very long

coherence times, can operate at room temperature, and are optimal information carriers between

distant nodes in a quantum network.

In this thesis, we will primarily explore two emerging technologies which use light to process

information: optical neural networks and quantum computers.

In Part I, we present several advancements we have made for optical neural networks, which use

1
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lattices of programmable interferometers to physically process optically encoded information. Chap-

ter 2 theoretically describes and experimentally demonstrates an electro-optic nonlinear activation

function for optical neural networks. Chapter 3 presents error-tolerant initialization routines and

architectures for the programmable multi-mode interferometers which can be combined to form an

optical neural network.

In Part II, we present three novel schemes for quantum computation and emulation. Chapter

4 details a design for a quantum programmable gate array – an integrated photonic circuit which

can be dynamically reconfigured without hardware modifications to prepare any quantum state or

operator. Chapter 5 presents an architecture for a photonic quantum computer which can perform

any computation using only a single coherently controlled atomic qubit. Finally, Chapter 6 describes

a design for a programmable quantum emulator capable of simulating the dynamics of a broad class

of quantum systems in arbitrary dimensions and topologies.



Part I

Classical information processing

using light

3



Chapter 2

Optical neural networks

In this Chapter, we introduce an electro-optic hardware platform for nonlinear activation functions

in optical neural networks (ONNs) [257]. The optical-to-optical nonlinearity operates by converting

a small portion of the input optical signal into an analog electric signal, which is used to modulate

the original optical signal with no reduction in processing speed. Our scheme allows for complete

nonlinear on-off contrast in transmission at relatively low optical power thresholds and eliminates

the requirement of having additional optical sources between each layer of the network. Moreover,

the activation function is reconfigurable via electrical bias, allowing it to be programmed or trained

to synthesize a variety of nonlinear responses. This activation function significantly improves the

performance of optical neural networks on a variety of machine learning tasks.

Additionally, we experimentally demonstrate this electro-optic activation function using a fab-

ricated silicon-nitride chip [193]. Electrical signal processing allows the integrated photonic circuit

to realize any optical-to-optical nonlinearity that does not require amplification. The demonstrated

activation circuit allows for the realization of arbitrary nonlinearities with far lower optical signal

attenuation, paving the way for much deeper ONNs.

2.1 Introduction

In recent years, there has been significant interest in alternative computing platforms specialized for

high performance and efficiency on machine learning tasks. GPUs have demonstrated peak perfor-

mance with trillions of floating point operations per second when performing matrix multiplication,

which is several orders of magnitude larger than general-purpose digital processors such as CPUs

[179]. However, dedicated matrix multiplication hardware promises even further computational ad-

vantages, and analog computing has been explored for this task because it is not limited by the

bottlenecks of sequential instruction execution and memory access [219, 220, 51, 46, 52].

Optical hardware platforms are particularly appealing for computing and signal processing due

4
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to their ultra-large signal bandwidths, low latencies, and reconfigurability [40, 148, 76]. They have

also gathered significant interest in machine learning applications, such as artificial neural networks

(ANNs). Nearly three decades ago, the first optical neural networks (ONNs) were proposed based on

free-space optical lens and holography setups [3, 196]. More recently, ONNs have been implemented

in chip-integrated photonic platforms [226] using programmable waveguide interferometer meshes

which perform matrix-vector multiplications [157]. In theory, the performance of such systems is

competitive with digital computing platforms because they may perform matrix-vector multiplica-

tions in constant time with respect to the matrix dimension. In contrast, matrix-vector multiplication

has a quadratic time complexity on a digital processor. Other approaches to performing matrix-

vector multiplications in chip-integrated ONNs, such as microring weight banks and photodiodes,

have also been proposed [237].

Nonlinear activation functions play a key role in ANNs by enabling them to learn complex

mappings between their inputs and outputs. Whereas digital processors have the expressiveness

to trivially apply nonlinearities such as the widely-used sigmoid, ReLU, and tanh functions, the

realization of nonlinearities in optical hardware platforms is more challenging. One reason for this

is that optical nonlinearities are relatively weak, necessitating a combination of large interaction

lengths and high signal powers, which impose lower bounds on the physical footprint and the energy

consumption, respectively. Although it is possible to resonantly enhance optical nonlinearities, this

comes with an unavoidable trade-off in reducing the operating bandwidth, thereby limiting the

information processing capacity of an ONN. Additionally, maintaining uniform resonant responses

across many elements of an optical circuit necessitates additional control circuitry for calibrating

each element [198].

A more fundamental limitation of optical nonlinearities is that their responses tend to be fixed

during device fabrication. This limited tunability of the nonlinear optical response prevents an

ONN from being reprogrammed to realize different forms of nonlinear activation functions, which

may be important for tailoring ONNs for different machine learning tasks. Similarly, a fixed nonlinear

response may also limit the performance of very deep ONNs with many layers of activation functions

since the optical signal power drops below the activation threshold, where nonlinearity is strongest,

in later layers due to loss in previous layers. For example, with optical saturable absorption from

2D materials in waveguides, the activation threshold is on the order of 1-10 mW [17, 180, 105],

meaning that the strength of the nonlinearity in each subsequent layer will be successively weaker

as the transmitted power falls below the threshold.

In light of these challenges, the ONN demonstrated in Ref. [226] implemented its activation

functions by detecting each optical signal, feeding them through a conventional digital computer to

apply the nonlinearity, and then modulating new optical signals for the subsequent layer. Although

this approach benefits from the flexibility of digital signal processing, conventional processors have

a limited number of input and output channels, which make it challenging to scale this approach
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to very large matrix dimensions, which corresponds to a large number of optical inputs. Moreover,

digitally applied nonlinearities add latency from the analog-to-digital conversion process and con-

strain the computational speed of the neural network to the same GHz-scale clock rates which ONNs

seek to overcome. Thus, a hardware nonlinear optical activation, which doesn’t require repeated

bidirectional optical-electronic signal conversion, is of fundamental interest for making integrated

ONNs a viable machine learning platform.

In this chapter, we propose an electro-optic architecture for synthesizing optical-to-optical non-

linearities which alleviates the issues discussed above. Our architecture features complete on-off

contrast in signal transmission, a variety of nonlinear response curves, and a low activation thresh-

old. Rather than using traditional optical nonlinearities, our scheme operates by measuring a small

portion of the incoming optical signal power and using electro-optic modulators to modulate the

original optical signal, without any reduction in operating bandwidth or computational speed. Ad-

ditionally, our scheme allows for the possibility of performing additional nonlinear transformations

on the signal using analog electrical components. Related electro-optical architectures for generating

optical nonlinearities have been previously considered [136, 145, 238]. In this chapter, we focus on

the application of our architecture as an element-wise activation in a feedforward ONN, but the

synthesis of low-threshold optical nonlinearities could be of broader interest to optical computing

and information processing.

2.2 Feedforward optical neural networks

In this section, we briefly review the basics of feedforward artificial neural networks (ANNs) and

describe their implementation in a reconfigurable optical circuit, as proposed in Ref. [226]. As

outlined in Fig. 2.1(a), an ANN is a function which accepts an input vector, x0 and returns an

output vector, xL. This is accomplished in a layer-by-layer fashion, with each layer consisting of a

linear matrix-vector multiplication followed by the application of an element-wise nonlinear function,

or activation, on the result. For a layer with index i, containing a weight matrix Ŵi and activation

function fi(·), its operation is described mathematically as

xi = fi

(
Ŵi · xi−1

)
(2.1)

for i from 1 to L.

Before they are able to perform a given machine learning task, ANNs must be trained. The

training process is typically accomplished by minimizing the prediction error of the ANN on a set

of training examples, which come in the form of input and target output pairs. For a given ANN,

a loss function is defined to quantify the difference between the target output and output predicted

by the network. During training, this loss function is minimized with respect to tunable degrees of

freedom, namely the elements of the weight matrix Ŵi within each layer. In general, although less
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Figure 2.1: (a) Block diagram of a feedforward neural network of L layers. Each layer consists of
a Ŵi block representing a linear matrix which multiplies vector inputs xi−1. The fi block in each
layer represents an element-wise nonlinear activation function operating on vectors zi to produce
outputs xi. (b) Schematic of the optical interferometer mesh implementation of a single layer of
the feedforward neural network. (c) Schematic of the proposed optical-to-optical activation function
which achieves a nonlinear response by converting a small portion of the optical input, z into an
electrical signal, and then intensity modulating the remaining portion of the original optical signal
as it passes through an interferometer.

common, it is also possible to train the parameters of the activation functions [246].

Optical hardware implementations of ANNs have been proposed in various forms over the past

few decades. In this chapter, we focus on a recent demonstration in which the linear operations

are implemented using an integrated optical circuit [226]. In this scheme, the information being

processed by the network, xi, is encoded into the modal amplitudes of the waveguides feeding the

device and the matrix-vector multiplications are accomplished using meshes of integrated optical

interferometers. In this case, training the network requires finding the optimal settings for the inte-

grated optical phase shifters controlling the inteferometers, which may be found using an analytical

model of the chip, or using in-situ backpropagation techniques [101].

In the next section, we present an approach for realizing the activation function, fi(·), on-chip
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with a hybrid electro-optic circuit feeding an inteferometer. In Fig. 2.1(b), we show how this

activation scheme fits into a single layer of an ONN and show the specific form of the activation

in Fig. 2.1(c). We also give the specific mathematical form of this activation and analyze its

performance in practical operation.

2.3 Nonlinear activation function architecture

In this section, we describe our proposed nonlinear activation function architecture for optical neural

networks, which implements an optical-to-optical nonlinearity by converting a small portion of the

optical input power into an electrical voltage. The remaining portion of the original optical signal

is phase- and amplitude-modulated by this voltage as it passes through an interferometer. For an

input signal with amplitude z, the resulting nonlinear optical activation function, f(z), is a result

of the responses of the interferometer under modulation as well as the components in the electrical

signal pathway.

A schematic of the architecture is shown in Fig. 2.1(c), where black and blue lines represent opti-

cal waveguides and electrical signal pathways, respectively. The input signal first enters a directional

coupler which routes a portion, α, of the input optical power to a photodetector. The photodetector

is the first element of an optical-to-electrical conversion circuit, which is a standard component of

high-speed optical receivers for converting an optical intensity into a voltage. Here we assume a

normalization of the optical signal such that the total power in the input signal is given by |z|2. The
optical-to-electrical conversion process consists of the photodetector producing an electrical current,

Ipd = R · α|z|2, where R is the photodetector responsivity, and a transimpedance amplifying stage,

characterized by a gain G, converting this current into a voltage VG = G ·R ·α|z|2. The output volt-
age of the optical-to-electrical conversion circuit then passes through a nonlinear signal conditioner

with a transfer function, H(·). This component allows for the application of additional nonlinear

functions to transform the voltage signal. Finally, the conditioned voltage signal, H(VG) is combined

with a static bias voltage, Vb to induce a phase shift of

∆ϕ =
π

Vπ

[
Vb +H

(
GRα|z|2

)]
(2.2)

for the optical signal routed through the lower port of the directional coupler. The parameter Vπ

represents the voltage required to induce a phase shift of π in the phase modulator. This phase

shift, defined by Eq. 2.2, is a nonlinear self-phase modulation because it depends on the input signal

intensity.

An optical delay line between the directional coupler and the Mach-Zehnder interferometer (MZI)

is used to match the signal propagation delays in the optical and electrical pathways. This ensures

that the nonlinear self-phase modulation defined by Eq. 2.2 is applied at the same time that the

optical signal which generated it passes through the phase modulator. For the circuit shown in Fig.
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2.1(c), the optical delay is τopt = τoe + τnl + τrc, accounting for the contributions from the group

delay of the optical-to-electrical conversion stage (τoe), the delay associated with the nonlinear signal

conditioner (τnl), and the RC time constant of the phase modulator (τrc).

The nonlinear self-phase modulation achieved by the electric circuit is converted into a nonlinear

amplitude response by the MZI, which has a transmission depending on ∆ϕ as

tMZI = j exp

(
−j∆ϕ

2

)
cos

(
∆ϕ

2

)
. (2.3)

Depending on the configuration of the bias, Vb, a larger input optical signal amplitude causes either

more or less power to be diverted away from the output port, resulting in a nonlinear self-intensity

modulation. Combining the expression for the nonlinear self-phase modulation, given by Eq. 2.2,

with the MZI transmission, given by Eq. 2.3, the mathematical form of the activation function can

be written explicitly as

f(z) = j
√
1− α exp

(
−j 1

2

[
ϕb + π

H
(
GRα|z|2

)

Vπ

])
cos

(
1

2

[
ϕb + π

H
(
GRα|z|2

)

Vπ

])
z, (2.4)

where the contribution to the phase shift from the bias voltage is

ϕb = π
Vb
Vπ
. (2.5)

For the remainder of this chapter, we focus on the case where no nonlinear signal conditioning

is applied to the electrical signal pathway, i.e. H(VG) = VG. However, even with this simplification

the activation function still exhibits a highly nonlinear response. We also neglect saturating effects

in the OE conversion stage which can occur in either the photodetector or the amplifier. However, in

practice, the nonlinear optical-to-optical transfer function could take advantage of these saturating

effects.

With the above simplifications, a more compact expression for the activation function response

is

f(z) = j
√
1− α exp

(
−j
[
gϕ |z|2

2
+
ϕb
2

])
cos

(
gϕ |z|2

2
+
ϕb
2

)
z, (2.6)

where the phase gain parameter is defined as

gϕ = π
αGR

Vπ
. (2.7)

Equation 2.7 indicates that the amount of phase shift per unit input signal power can be increased

via the gain and photodiode responsivity, or by converting a larger fraction of the optical power to

the electrical domain. However, tapping out a larger fraction optical power also results in a larger

linear loss, which is undesirable.
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Figure 2.2: Activation function output amplitude (blue lines) and activation function transmission
(green lines) as a function of input signal amplitude. The input and output are normalized to the
phase gain parameter, gϕ. Panel pairs (a),(b) and (c),(d) correspond to a ReLU-like response, with a
suppressed transmission for inputs with small amplitude and high transmission for inputs with large
amplitude. Panel pairs (e),(f) and (g),(h) correspond to a clipped response, with high transmission
for inputs with small amplitude and reduced transmission for inputs with larger amplitude.

The electrical biasing of the activation phase shifter, represented by Vb, is an important degree

of freedom for determining its nonlinear response. We consider a representative selection, consisting

of four different responses, in Fig. 2.2. The left column of Fig. 2.2 plots the output signal amplitude

as a function of the input signal amplitude i.e. |f(z)| in Eq. 2.6, while the right column plots the

transmission coefficient i.e. |f(z)|2/|z|2, a quantity which is more commonly used in optics than

machine learning. The first two rows of Fig. 2.2, corresponding to ϕb = 1.0π and 0.85π, exhibit a

response which is comparable to the ReLU activation function: transmission is low for small input

values and high for large input values. For the bias of ϕb = 0.85π, transmission at low input

values is slightly increased with respect to the response where ϕb = 1.00π. Unlike the ideal ReLU

response, the activation at ϕb = 0.85π is not entirely monotonic because transmission first goes to

zero before increasing. On the other hand, the responses shown in the bottom two rows of Fig.
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Parameter Value

Modulator and detector rate 10 GHz

Photodetector responsivity (R) 1 A/W

Optical-to-electrical circuit power consumption 100 mW

Optical-to-electrical circuit group delay (τeo) 100 ps

Phase modulator RC delay (τrc) 20 ps

Mesh MZI length (DMZI) 100 µm

Mesh MZI height (HMZI) 60 µm

Waveguide effective index (neff) 3.5

Table 2.1: Summary of parameter values

2.2, corresponding to ϕb = 0.0π and 0.50π, are quite different. These configurations demonstrate a

saturating response in which the output is suppressed for higher input values but enhanced for lower

input values. For all of the responses shown in Fig. 2.2, we have assumed α = 0.1 which limits the

maximum transmission to 1− α = 0.9.

A benefit of having electrical control over the activation response is that, in principle, its electrical

bias can be connected to the same control circuitry which programs the linear interferometer meshes.

In doing so, a single ONN hardware unit can then be reprogrammed to synthesize many different

activation function responses. This opens up the possibility of heuristically selecting an activation

function response, or directly optimizing the the activation bias using a training algorithm. This

realization of a flexible optical-to-optical nonlinearity can allow ONNs to be applied to much broader

classes of machine learning tasks.

We note that Fig. 2.2 shows only the amplitude response of the activation function. In fact, all of

these responses also introduce a nonlinear self-phase modulation to the output signal. If desired, this

nonlinear self-phase modulation can be suppressed using a push-pull interferometer configuration

in which the generated phase shift, ∆ϕ, is divided and applied with opposite sign to the top and

bottom arms.

2.4 Performance and scalability

In this section, we discuss the performance of an integrated ONN which uses meshes of integrated

optical interferometers to perform matrix-vector multiplications and the electro-optic activation

function, as shown in Fig. 2.1(b),(c). Here, we focus on characterizing how the power consumption,

computational latency, physical footprint, and computational speed of the ONN scale with respect

to the number of network layers, L and the dimension of the input vector, N , assuming square

matrices. The system parameters used for this analysis are summarized in Table 2.1 and the figures

of merit are summarized in Table 2.2.
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Scaling Per-layer figures of merit

Mesh Activation N = 4 N = 10 N = 100

Power consumption∗ LN 0.4 W 1 W 10 W

Latency LN L 125 ps 132 ps 237 ps

Footprint LN2 LN 2.5 mm2 6.6 mm2 120.0 mm2

Speed LN2 1.6× 1011 MAC/s 1× 1012 MAC/s 1× 1014 MAC/s

Efficiency∗ N−1 2.5 pJ/MAC 1 pJ/MAC 100 fJ/MAC

∗Assuming no power consumption in the interferometer mesh phase shifters

Table 2.2: Summary of per-layer optical neural network performance using the electro-optic acti-
vation function

2.4.1 Power consumption

The power consumption of the ONN, as shown in Fig. 2.1(b), consists of contributions from (1) the

programmable phase shifters inside the interferometer mesh, (2) the optical source supplying the

input vectors, x0, and (3) the active components of the activation function such as the amplifier

and photodetector. In principle, the contribution from (1) can be made negligible by using phase

change materials or ultra-low power MEMS phase shifters. Therefore, in this section we focus only

on contributions (2) and (3) which pertain to the activation function.

To quantify the power consumption, we first consider the minimum input optical power to a

single activation that triggers a nonlinear response. We refer to this as the activation function

threshold, which is mathematically defined as

Pth =
∆ϕ|δT=0.5

gϕ
=

Vπ
παGR

·∆ϕ|δT=0.5, (2.8)

where ∆ϕ|δT=0.5 is the is phase shift necessary to generate a 50% change in the power transmission

with respect to the transmission with null input for a given ϕb. This threshold corresponds to

z
√
gϕ/π = 0.73 in Fig. 2.2(b), to z

√
gϕ/π = 0.85 in Fig. 2.2(d), to z

√
gϕ/π = 0.73 in Fig. 2.2(f),

and to z
√
gϕ/π = 0.70 in Fig. 2.2(h). In general, a lower activation threshold will result in a lower

optical power required at the ONN input, |x0|2. According to Eq. 2.8, the activation threshold can

be reduced via a small Vπ and a large optical-to-electrical conversion gain, GR ∼ 1.0 V/mW. The

relationship between G and Vπ for activation thresholds of 0.1 mW, 1.0 mW, and 10.0 mW is shown

in Fig. 2.3 for a fixed R = 1 A/W. Additionally, in Fig. 2.3 we conservatively assume ϕb = π which

has the highest threshold of the activation function biases shown in Fig. 2.2.

If we take the lowest activation threshold of 0.1 mW in Fig. 2.3, the optical source to the ONN

would then need to supply N · 0.1 mW of optical power. The power consumption of integrated

optical receiver amplifiers varies considerably, ranging from as low as 10 mW to as high as 150 mW

[6, 218, 169], depending on a variety of factors which are beyond the scope of this article. Therefore,
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Figure 2.3: Contours of constant activation threshold as a function of the optical-to-electrical
gain and the modulator Vπ of the activation function shown in Fig. 2.1(c) with a photodetector
responsivity R = 1.0 A/W.

a conservative estimate of the power consumption from the optical-to-electrical conversion circuits

in all activations is L · N · 100 mW. For an ONN with N = 100, the power consumption per

layer from the activation function would be 10 W and would require a total optical input power of

N · Pth = 100 · 0.1 mW = 10 mW. Thus, the total power consumption of the ONN is dominated by

the activation function electronics.

2.4.2 Latency

For the feedforward neural network architecture shown in Fig. 2.1(a), the latency is defined by

the elapsed time between supplying an input vector, x0 and detecting its corresponding prediction

vector, xL. In an integrated ONN, as implemented in Fig. 2.1(b), this delay is simply the travel

time for an optical pulse through all L-layers. Following Ref. [226], the propagation distance in a

square interferometer mesh is DW = N · DMZI, where DMZI is the length of each MZI within the

mesh. In the nonlinear activation layer, the propagation length will be dominated by the delay line

required to match the optical and electrical delays, and is given by

Df = (τoe + τnl + τrc) · vg, (2.9)
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where the group velocity vg = c0/neff is the speed of optical pulses in the waveguide. Therefore,

latency = L ·N ·DMZI · vg−1

︸ ︷︷ ︸
Interferometer mesh

+L · (τoe + τnl + τrc)︸ ︷︷ ︸
Activation function

. (2.10)

Equation 2.10 indicates that the latency contribution from the interferometer mesh scales with the

product LN , which is the same scaling as predicted in Ref. [226]. On the other hand, the activation

function adds to the latency independently of N because each activation circuit is applied in parallel

to all N -vector elements.

For concreteness, we assume DMZI = 100 µm and neff = 3.5. Following our assumption in the

previous section of using no nonlinear electrical signal conditioner in the activation function, τnl =

0 ps. Typical group delays for integrated transimpedance amplifiers used in optical receivers can

range from τoe ≈ 10 to 100 ps. Moreover, assuming an RC-limited phase modulator speed of 50 GHz

yields τrc ≈ 20 ps. Therefore, if we assume a conservative value of τoe = 100 ps, a network dimension

of N ≈ 100 would have a latency of 237 ps per layer, with equal contributions from the mesh and

the activation function. For a ten layer network (L = 10) the total latency would be approximately

2.4 ns, still orders of magnitude lower than the latency typically associated with GPUs.

2.4.3 Physical footprint

The physical footprint of the ONN consists of the space taken up by both the linear interferometer

mesh and the optical and electrical components of the activation function. Neglecting the electrical

control lines for tuning each MZI, the total footprint of the ONN is

A = L ·N2 ·AMZI︸ ︷︷ ︸
Interferometer mesh

+ L ·N ·Af︸ ︷︷ ︸
Activation function

, (2.11)

where AMZI = DMZI ·HMZI is the area of a single MZI element in the mesh and Af = Df ·Hf is the

area of a single activation function.

In the direction of propagation, Df is dominated by the waveguide optical delay line required to

match the delay of the electrical signal pathway. Based on the previous discussion of the activation

function’s latency, τopt = 120 ps corresponds to a total waveguide length ofDf ≈ 1 cm. For simplicity,

we assume this delay is achieved using a straight waveguide, which results in a large footprint but with

optical losses that can be very low. For example, in silicon waveguides losses below 0.5 dB/cm have

been experimentally demonstrated [217]. In principle, incorporating waveguide bends or resonant

optical elements could significantly reduce the activation function’s footprint. For example, coupled

micro ring arrays have experimentally achieved group delays of 135 ps over a bandwidth of 10 GHz

in a 0.03 mm × 0.25 mm footprint [41].

Transverse to the direction of propagation, the activation function footprint will be dominated

by the electronic components of the optical-to-electrical conversion circuit. In principle, compact
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waveguide photodetectors and modulators can be utilized. However, the components of the tran-

simpedance amplifier may be challenging to integrate in the area available between neighboring

output waveguides of the interferometer mesh. One possibility towards achieving a fully integrated

opto-electronic ONN would be to use so-called amplifier-free optical receivers [169], where ultra-low

capacitance detectors provide high-speed opto-electronic conversion. Similarly to the experimental

demonstration in Ref. [170], the amplifier-free receiver could be integrated directly with a high ef-

ficiency (e.g. effectively a low Vπ) electro-optic modulator. Compact electro-absorption modulators

could also be utilized. In addition to achieving a compact footprint, operating without an amplifier

would also result in an order of magnitude reduction in both power consumption and latency, with

the later reducing the required length of the optical delay line and thus the footprint.

For the purposes of our analysis, we assume no integration of the electronic transimpedance

amplifier and, therefore, that the on-chip components of the activation function fit within the height

of each interferometer mesh row, Df ≤ DMZI = 60 µm. Under this assumption and following the

scaling in Eq. 2.11, the total footprint of a single ONN layer of dimension N = 10 would be 11.0

mm × 0.6 mm. Interestingly, following the latency discussion in the previous section, a single ONN

layer of dimension N = 100 would have a footprint of 20.0 mm × 6.0 mm, with equal contribution

from the activation function and from the mesh.

2.4.4 Speed

The speed, or computational capacity, of the ONN, as shown in Fig. 2.1(a), is determined by the

number of input vectors, x0 that can be processed per unit time. Here, we argue that although our

activation function is not fully optical, it results in no speed degradation compared to a linear ONN

consisting of only interferometer meshes.

The reason for this is that a fully integrated ONN would also include high-speed modulators and

detectors on-chip to perform fast modulation and detection of sequences of x0 vectors and xL vectors,

respectively. We therefore argue that the same high-speed detector and modulator elements could

also be integrated between the linear network layers to provide the optical-electrical and electrical-

optical transduction for the activation function. State of the art integrated transimpedance amplifiers

can already operate at speeds comparable to the optical modulator and detector rates, which are

on the order of 50 - 100 GHz [263, 6], and thus would not be a limiting factor in the speed of our

architecture.

To perform a matrix-vector multiplication on a conventional CPU requiresN2 multiply-accumulate

(MAC) operations, each consisting of a single multiplication and a single addition. Therefore, as-

suming a photodetector and modulator rate of 10 GHz means that an ONN can effectively perform

N2 · L · 1010 MAC/sec. This means that one layer of an ONN with dimension N = 10 would

effectively perform 1012 MAC/sec. Increasing the input dimension to N = 100 would then scale

the performance of the ONN to 1014 MAC/sec per layer. This is two orders of magnitude greater
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than the peak performance obtainable with modern GPUs, which typically have performance on the

order of 1012 floating point operations/sec (FLOPS). Because the power consumption of the ONN

scales as LN (assuming passive phase shifters in the mesh) and the speed scales as LN2, the energy

per operation is minimized for large N (Table 2.2). Thus, for large ONNs the power consumption

associated with the electro-optic conversion in the activation function can be amortized over the

parallelized operation of the linear mesh.

We note that the activation function circuit shown in Fig. 2.1(c) can be modified to remove the

matched optical delay line by using very long optical pulses. This modification may be advantageous

for reducing the footprint of the activation and would result in τopt ≪ τele. However, this results in

a reduction of the ONN speed, which would then be limited by the combined activation delay of all

L nonlinear layers in the network, ∼ (L · τele)−1
.

2.5 Comparison with the Kerr effect

All-optical nonlinearities such as bistability and saturable absorption have been previously considered

as potential activation functions in ONNs [3, 227]. An alternative implementation of the activation

function in Fig. 2.1(c) could consist of a nonlinear MZI, with one of its arms having a material with

Kerr nonlinear optical response. The Kerr effect is a third-order optical nonlinearity which generates

a change in the refractive index, and thus a nonlinear phase shift, which is proportional to the input

pulse intensity. In this section we compare the electro-optic activation function introduced in the

previous section [Fig. 2.1(c)] to such an alternative all-optical activation function using the Kerr

effect, highlighting how the electro-optic activation can achieve a lower activation threshold.

Unlike the electro-optic activation function, the Kerr effect is lossless and has no latency because

it arises from a nonlinear material response, rather than a feedforward circuit. A standard figure

of merit for quantifying the strength of the Kerr effect in a waveguide is through the amount of

nonlinear phase shift generated per unit input power per unit waveguide length. This is given

mathematically by the expression

ΓKerr =
2π

λ0

n2
A
, (2.12)

where n2 is the nonlinear refractive index of the material and A is the effective mode area. ΓKerr

ranges from 100 (W·m)−1 in chalcogenide to 350 (W·m)−1 in silicon [126]. An equivalent figure of

merit for the electro-optic feedforward scheme can be mathematically defined as

ΓEO = π
αRG

VπL
, (2.13)

where VπL is the phase modulator figure of merit. The figures of merit described in Eqs. 2.12-2.13

can be represented as an activation threshold (Eq. 2.8) via the relationship Pth = ∆ϕ|δT=0.5

ΓL , for a

given waveguide length, L where the electro-optic phase shift or nonlinear Kerr effect take place.
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Figure 2.4: Nonlinear parameter ΓEO for the electro-optic activation as a function of (a) gain, G,
for α = 0.50, 0.10, and 0.01 and (b) modulator VπL. The nonlinear parameter associated with the
optical Kerr effect, ΓKerr in a Silicon waveguide of cross sectional area A = 0.05 µm2 corresponds to
the black dotted line.

A comparison of Eq. 2.12 and Eq. 2.13 indicates that while the strength of the Kerr effect is

largely fixed by waveguide design and material choice, the electro-optic scheme has several degrees

of freedom which allow it to potentially achieve a stronger nonlinear response. The first design

parameter is the amount of power tapped off to the photodetector, which can be increased to

generate a larger voltage at the phase modulator. However, increasing α also increases the linear

signal loss through the activation which does not contribute to the nonlinear mapping between the

input and output of the ONN. Therefore, α should be minimized as long as the optical power routed

to the photodetector is large enough to be above the noise equivalent power level.

On the other hand, the product RG determines the conversion efficiency of the detected optical

power into an electrical voltage. Fig. 2.4(a) compares the nonlinearity strength of the electro-optic

activation (blue lines) to that of an implementation using the Kerr effect in silicon (black dashed

line) for several values of α, as a function of G. The responsivity is fixed at R = 1.0 A/W. We

observe that tapping out 10% of the optical power requires a gain of 20 dBΩ to achieve a nonlinear

phase shift equivalent threshold to that of a silicon waveguide where A = 0.05 µm2 for the same

amount of input optical power. Tapping out only 1% of the optical power requires an additional 10

dBΩ of gain to maintain this equivalence. We note that the gain range considered in Fig. 2.4(a)

is well within the regime of what has been demonstrated in integrated transimpedance amplifiers
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for optical receivers [6, 218, 169]. In fact, many of these systems have demonstrated much higher

gain. In Fig. 2.4(a), the phase modulator VπL was fixed at 20 V·mm. However, because a lower

VπL translates into an increased phase shift for a given applied voltage, this parameter can also

be used to enhance the nonlinearity. Fig. 2.4(b) demonstrates the effect of changing the VπL for

several values of of G, again, with a fixed responsivity R = 1.0 A/W. This demonstrates that with a

reasonable level of gain and phase modulator performance, the electro-optic activation function can

trade off an increase in latency for a significantly lower optical activation threshold than the Kerr

effect.

2.6 Machine learning tasks

In this section, we apply the electro-optic activation function introduced above to several machine

learning tasks. In Sec. 2.6.1, we simulate training an ONN to implement an exclusive-OR (XOR)

logical operation. The network is modeled using neuroptica [22], a custom ONN simulator written

in Python, which trains the simulated networks only from physically measurable field quantities

using the on-chip backpropagation algorithm introduced in Ref. [101]. In Sec. 2.6.2, we consider

the more complex task of using an ONN to classify handwritten digits from the Modified NIST

(MNIST) dataset, which we model using the neurophox [176] package and tensorflow [1], which

computes gradients using automatic differentiation. In both cases, we model the values in the

network as complex-valued quantities and represent the interferometer meshes as unitary matrices

parameterized by phase shifters.

2.6.1 Exclusive-OR Logic Function

An exclusive-OR (XOR) is a logic function which takes two inputs and produces a single output. The

output is high if only one of the two inputs is high, and low for all other possible input combinations.

In this example, we consider a multi-input XOR which takes N input values, given by x1 . . . xN , and

produces a single output value, y. The input-output relationship of the multi-input XOR function is

a generalization of the two-input XOR. For example, defining logical high and low values as 1 and 0,

respectively, a four-input XOR has an output table indicated the desired values in Fig. 2.5(b). We

select this task for the ONN to learn because it requires a non-trivial level of nonlinearity, meaning

that it could not be implemented in an ONN consisting of only linear interferometer meshes.

The architecture of the ONN used to learn the XOR is shown schematically in Fig. 2.5(a). The

network consists of L layers, with each layer constructed from an N×N unitary interferometer mesh

followed by an array of N parallel electro-optic activation functions, with each element corresponding

to the circuit in Fig. 2.1(c). After the final layer, the lower N − 1 outputs are dropped to produce

a single output value which corresponds to y. Unlike the ideal XOR input-output relationship

described above, for the XOR task learned by the ONN we normalize the input vectors such that
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Figure 2.5: (a) Architecture of an L-layer ONN used to implement an N -input XOR logic function.
(b) Red dots indicate the learned input-output relationship of the XOR forN = 4 on an 2-layer ONN.
Electro-optic activation functions are configured with gain g = 1.75π and biasing phase ϕb = π. (c)
Mean squared error (MSE) versus training epoch. (d) Final MSE after 5000 epochs averaged over
20 independent training runs vs activation function gain. Different lines correspond to the responses
shown in Fig. 2.2, with ϕb = 1.00π, 0.85π, 0.00π, and 0.50π. Shaded regions correspond to the
range (minimum and maximum) final MSE from the 20 training runs.

they always have an L2 norm of 1. This constraint is equivalent to enforcing a constant input power

to the network. Additionally, because the activation function causes the optical power level to be

attenuated at each layer, we take the high output state to be a value of 0.2, as shown in Fig. 2.1(b).

The low output remains at a value of 0.0. An alternative to using a smaller amplitude for the output

high state would be to add additional ports with fixed power biases to increase the total input power

to the network, similarly to the XOR demonstrated in Ref. [101].

In Fig. 2.5(b) we show the four-input XOR input-output relationship which was learned by a

two-layer ONN. The electro-optic activation functions were configured to have a gain of g = 1.75π

and biasing phase of ϕb = π. This biasing phase configuration corresponds to the ReLU-like response

shown in Fig. 2.2(a). The black markers indicate the desired output values while the red circles

indicate the output learned by the two-layer ONN. Fig. 2.5(b) indicates excellent agreement between
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the learned output and the desired output. The evolution of the mean squared error (MSE) between

the ONN output and the desired output during training confirms this agreement, as shown in Fig.

2.5(c), with a final MSE below 10−5.

To train the ONN, a total of 2N = 16 training examples were used, corresponding to all possible

binary input combinations along the x-axis of Fig. 2.5(b). All 16 training examples were fed through

the network in a batch to calculate the mean squared error (MSE) loss function. The gradient of the

loss function with respect to each phase shifter was computed by backpropagating the error signal

through the network to calculate the loss sensitivity at each phase shifter [101]. The above steps were

repeated until the MSE converged, as shown in Fig. 2.5(c). Only the phase shifter parameters were

optimized by the training algorithm, while all parameters of the activation function were unchanged.

To demonstrate that the nonlinearity provided by the electro-optic activation function is essential

for the ONN to successfully learn the XOR, in Fig. 2.5(d) we plot the final MSE after 5000 training

epochs, averaged over 20 independent training runs, as a function of the activation function gain,

gϕ. The shaded regions indicates the minimum and maximum range of the final MSE over the 20

training runs. The four lines shown in Fig. 2.5(d) correspond to the four activation function bias

configurations shown in Fig. 2.2.

For the blue curve in Fig. 2.5(d), which corresponds to the ReLU-like activation, we observe a

clear improvement in the final MSE with an increase in the nonlinearity strength. We also observe

that for very high nonlinearity, above gϕ = 1.5π, the range between the minimum and maximum

final MSE broadens and the mean final MSE increases. However, the best case (minimum) final MSE

continues to decrease, as indicated by the lower border of the shaded blue region. This trend indicates

that although increasing nonlinearity improves the ONN’s ability to learn the XOR function, very

high levels of nonlinearity may also prevent the training algorithm from converging.

A trend of decreasing MSE with increasing nonlinearity is also observed for the activation corre-

sponding to the green curve in Fig. 2.5(d). However, the range of MSE values begins to broaden at

a lower value of gϕ = 1.0π. Such broadening may be a result of the changing slope in the activation

function output, as shown in Fig. 2.2(e). For the activation functions corresponding to the red and

orange curves in Fig. 2.5(d), the final MSE decreases somewhat with an increase in gϕ, but generally

remains much higher than the other two activation function responses. We conclude that these two

responses are not as well suited for learning the XOR function. Overall, these results demonstrate

that the flexibility of our architecture to achieve specific forms of nonlinear activation functions is

important for the successful operation of an ONN.

2.6.2 Handwritten Digit Classification

The second task we consider for demonstrating the activation function is classifying images of hand-

written digits from the MNIST dataset, which has become a standard benchmark problem for ANNs

[133]. The dataset consists of 70,000 grayscale 28×28 pixel images of handwritten digits between 0
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Figure 2.6: (a) Schematic of an optical image recognition setup based on an ONN. Images of
handwritten numbers from the MNIST database are preprocessed by converting from real-space
to k-space and selecting N Fourier coefficients associated with the smallest magnitude k-vectors.
(b) Test accuracy (solid lines) and training accuracy (dashed lines) during training for a two layer
ONN without activation functions (blue) and with activation functions (orange). N = 16 Fourier
components were used as inputs to the ONN and each vector was normalized such that its L2 norm
is unity. The activation function parameters were gϕ = 0.05π and ϕb = 1.00π. (c) Cross entropy
loss during training. (d) Confusion matrix, specified in percentage, for the trained ONN with the
electro-optic activation function.

and 9. Several representative images from the dataset are shown in Fig. 2.6(a).

To reduce the number of input parameters, and hence the size of the neural network, we use

a preprocessing step to convert the images into a Fourier-space representation. Specifically, we

compute the 2D Fourier transform of the images which is defined mathematically as c(kx, ky) =
∑
m,n e

jkxm+jkyng(m,n), where g(m,n) is the gray scale value of the pixel at location (m,n) within

the image. The amplitudes of the Fourier coefficients c(kx, ky) are shown below their corresponding

images in Fig. 2.6(a). These coefficients are generally complex-valued, but because the real-space

map g(m,n) is real-valued, the condition c(kx, ky) = c∗(−kx,−ky) applies.
We observe that the Fourier-space profiles are mostly concentrated around small kx and ky,

corresponding to the center region of the profiles in Fig. 2.6(a). This is due to the slowly varying

spatial features in the images. We can therefore expect that most of the information is carried by the
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small-k Fourier components, and with the goal of decreasing the input size, we can restrict the data

to N coefficients with the smallest k =
√
k2x + k2y. An additional advantage of this preprocessing

step is that it reduces the computational resources required to perform the training process because

the neural network dimension does not need to accommodate all 282 = 784 pixel values as inputs.

Fourier preprocessing is particularly relevant for ONNs for two reasons. First, the Fourier trans-

form has a straightforward implementation in the optical domain using techniques from Fourier

optics involving standard components such as lens and spatial filters [79]. Second, this approach

allows us to take advantage of the fact that ONNs are complex -valued functions. That is to say,

the N complex-valued coefficients c(kx, ky) can be handled by an N -dimensional ONN, whereas to

handle the same input using a real-valued neural network requires a twice larger dimension. The

ONN architecture used in our demonstration is shown schematically in Fig. 2.6(a). The N Fourier

coefficients closest to kx = ky = 0 are fed into an optical neural network consisting of L layers,

after which a drop-mask reduces the final output to 10 components. The intensity of the 10 outputs

are recorded and normalized by their sum, which creates a probability distribution that may be

compared with the one-hot encoding of the digits from 0 to 9. The loss function is defined as the

cross-entropy between the normalized output intensities and the correct one-hot vector.

During each training epoch, a subset of 60,000 images from the dataset were fed through the

network in batches of 500. The remaining 10,000 image-label pairs were used to form a test dataset.

For a two-layer network with N = 16 Fourier components, Fig. 2.6(b) compares the classification

accuracy over the training dataset (solid lines) and testing dataset (dashed lines) while Fig. 2.6(b)

compares the cross entropy loss during optimization. The blue curves correspond to an ONN with

no activation function (e.g. a linear optical classifier) and the orange curves correspond to an ONN

with the electro-optic activation function configured with gϕ = 0.05π, ϕb = 1.00π, and α = 0.1.

The gain setting in particular was selected heuristically. We observe that the nonlinear activation

function results in a significant improvement to the ONN performance during and after training.

The final validation accuracy for the ONN with the activation function is 93%, which amounts to

an 8% difference as compared to the linear ONN which achieved an accuracy of 85%.

The confusion matrix computed over the testing dataset is shown in Fig. 2.6(d). We note that

the prediction accuracy of 93% is high considering that only N = 16 complex Fourier components

were used, and the network is parameterized by only 2×N2×L = 1024 free parameters. Moreover,

this prediction accuracy is comparable with the 92.6% accuracy achieved in a fully-connected linear

classifier with 4010 free parameters taking all of the 282 = 784 real-space pixel values as inputs

[133]. Finally, in Table 2.3 we show that the accuracy can be further improved by including a third

layer in the ONN and by making the activation function gain a trainable parameter. This brings the

testing accuracy to 94%. Based on the parameters from Table 2.1 and the scaling from Table 2.2,

the 3 layer handwritten digit classification system would consume 4.8 W while performing 7.7×1012

MAC/sec. Its prediction latency would be 1.5 ns.



CHAPTER 2. OPTICAL NEURAL NETWORKS 23

# Layers Without activation With activation

Untrained Trained

1 85.00% 89.80% 89.38%

2 85.83% 92.98% 92.60%

3 85.16% 92.62% 93.89%

Table 2.3: Accuracy on the MNIST testing dataset after optimization. The phase gain, gϕ, of each
layer was optimized during training.

2.7 Experimental realization of arbitrary electro-optic acti-

vation functions

In this section, we experimentally demonstrate a the electro-optic architecture for realizing optical-to-

optical activation functions described earlier in this chapter using a custom-fabricated silicon-nitride

chip. Related proposals of realizing optical nonlinearities using electro-optics have been proposed

in Refs. [136, 145, 94, 238]. In our scheme, rather than using traditional optical nonlinearities we

fabricate structures on a photonic integrated circuit to measure a small portion of the incoming

optical signal power and use electro-optic modulators to modulate the original optical signal. Our

prototype relies on thermo-optic modulation but, in principle, the demonstrated activation can

use fast modulation mechanisms to enable ONNs operating with GHz-rate computational speeds.

This activation circuit allows for the realization of strong nonlinearities without the requirement of

having additional optical sources between each layer of the network [238]. We also demonstrate an

extension of the circuit capabilities originally proposed in Ref. [257] to realize arbitrary nonlinearities

via electrical signal processing with ultra-low activation thresholds. We focus on an implementation

of the activation function that does not use optical gain elements.

2.7.1 Fabricated device

The schematic of the proposed nonlinear activation function circuit is shown in Fig. 2.7 (b), and

Figure 2.7(c) shows a micrograph of the on-chip nonlinear activation function circuit using a SiN

waveguide technology. A schematic of an early prototype chip layout is shown in Figure 2.8; this

design was fabricated, but a smaller version of this chip with fewer layers was used for the measure-

ments in Section 2.8.

The circuit consists of a 1:99 directional coupler (DC) and a MZI with a top metal thermal

phase shifter. Note that the low speed of the thermal phase shifter limits the operational speed of

the prototype device. This limited operational speed is not concerning since the main purpose of

this experiment is to demonstrate the capabilities of the proposed circuit to generate nonlinear acti-

vation functions. Fabricating the proposed circuit in technologies that provide high-speed intensity
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Figure 2.7: (a) Schematic of the optical interferometer mesh implementation of a single layer of
the feedforward neural network. (b) Schematic of the proposed optical-to-optical activation func-
tion circuit. The black and blue lines represent optical waveguides and electrical signal pathways
respectively. (c) Optical image of the fabricated activation function circuit with Mach-Zehnder in-
terferometer modulator.

modulation, such as silicon photonics, can provide fast operational speed [211, 228, 16]. The 1%

tapped out port of the DC and the cross-port of the MZI are routed to the edge of the die for edge

coupling, while the unused ports are terminated by small spirals, which scatter light due to the small

bend radius of the spirals and prevent signal reflection.

Figure 2.9 shows the measured MZI output for various applied voltages to the phase shifter. The

thermal phase shifter requires 12.8V for a π-phase shift and MZI cross-port shows an extinction

ratio larger than 40 dB. The insertion loss of the device excluding two 3.25 dB fiber-to-waveguide

coupling loss is around 1 dB.

The phase shift in a high-speed intensity modulator typically follows the applied modulating

voltage linearly as in Eq. 2.2. However, thermal phase shifters induce a phase shift proportional to
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Figure 2.8: Chip layout of the fabricated device: a 4 × 4 multi-layer optical neural network with
multiple layers of nonlinear activation functions. Silicon nitride waveguides are shown in red, while
electrical connections for the thermal phase shifters are shown in purple. Note that measured
activation function transmissions in Section 2.8 used a smaller version of this chip with fewer layers.
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Figure 2.9: The output of the MZI for various voltages applied to the phase shift for 0dBm input
power to the directional coupler. The blue line shows the output power of the MZI in dBm, and the
red line shows the corresponding normalized MZI output.

the square of the applied modulating voltage given by

∆ϕthermal = π

(
Vm
Vπ

)2

. (2.14)

2.8 Experimental results

This section details two sets of experiments demonstrating the capabilities of the proposed activation

function circuit. Figure 2.10(a) depicts the measurement setup, while Figs. 2.10(b) and 2.10(c)

present the block diagram of the two measurement setups. In the first experiment, the tapped out

power is converted to a voltage signal and amplified by an optical receiver circuit and directly used

to modulate the thermal phase shifter (Fig. 2.10(b)). This setup implements a limited number

of activation functions. In the second setup, the direct controller is replaced by a re-configurable

lookup table that generates arbitrary nonlinear activation functions. The microcontroller in Fig.

2.10(c) implements the lookup table.

To perform the experiments, we first beam a 1550 nm laser through a variable optical attenuator

(VOA). The VOA allows us to control the amplitude of the input optical signal. Next, the signal

is sent through a polarization controller. Integrated waveguides are polarization sensitive, so the

polarization controller is used to minimize the coupling loss. The signal is then sent to the on-chip

nonlinear activation function circuit through a fiber array. Finally, the activated signal exits through

the fiber array. An electrical probe card is used to control the on-chip thermal phase shifter.

2.8.1 Direct controller

We first consider the direct controller experimental setup, as shown in Fig. 2.10(b), which routes the

1% tapped out signal from the directional coupler to a 75 MHz Thorlabs photoreceiver (PDB420C)
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Figure 2.10: (a) A photo of the measurement setup, (b) the block diagram of the measurement
setup with direct controller, (c) the block diagram of the measurement setup with the lookup table.

with a conversion gain of 250K V/W. The maximum input power to the device is limited to -8 dBm

to ensure linear photoreceiver operation. The output of the photoreceiver (RX in Fig. 2.10(b)) is

amplified by an operational amplifier (OP-AMP in Fig. 2.10(a)) and is connected to the thermal

phase shifter on the top MZI arm. The opposite end of the thermal heater is connected to a

power supply for controlling the initial MZI bias. With this biasing configuration, the effective

modulating voltage equals the difference of the bias voltage and the tapped out photo-generated

voltage: Vm = VG − Vb.
Figure 2.11 plots the normalized output power |f(z)|2 as a function of normalized input power

|z|2 and compares it with the simulation result, at four different bias voltages applied to the thermal

phase shifter.

In modeling the performance of the device, we assume that no nonlinear signal conditioning
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Figure 2.11: The normalized output power (|f(z)|2) of nonlinear activation function circuit for
various the normalized input power (|z|2) at several bias point. In all of the figures, the normalized
output power is relative to the maximum achievable output power of the circuit, which relates to
minimum MZI attenuation.

was applied to the electrical signal pathway, i.e. VG = GRα|z|2. We observe excellent agreement

between the measured and simulated activation function response, as shown in Fig. 2.11. The

small difference between the measurements and simulation results could be due to the nonlinear

response of the photoreceiver. Figures 2.11(b), 2.11(c), and 2.11(d), corresponding to Vb = 12.8V,

14V, and 16V, exhibit a response which is similar to the ReLU activation function: optical signal

transmission is low for small input values and high for large input values. For the bias of Vb = 14V

and 16V, transmission at low input power values is slightly increased compared to the response at

Vb = 12.8V. Unlike the ideal ReLU response, the activation at Vb = 14V and 16V is not entirely

monotonic because transmission first goes to zero before increasing [257]. The response shown in

Fig. 2.11(a), corresponding to Vb = 0.0V, is quite different. It demonstrates a saturation response

in which the output is suppressed for higher input values but enhanced for lower input values.

As shown in Fig. 2.11, the bias voltage changes the activation response. The same control
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circuitry which programs linear interferometer meshes can control the activation response through

the bias voltage. The resulting device is a programmable ONN that can implement a range of

activation functions.

A fully integrated ONN in a high-speed photonic platform, such as silicon photonics [228, 16]

would include on-chip high-speed modulators and detectors to modulate and detect the sequences

of input vectors to the input layer of the ONN and output vectors of the output layer of the ONN,

respectively. The same high-speed detector and modulator elements could also be integrated between

the optical interference unit to provide the activation function circuit. State of the art integrated

transimpedance amplifiers operate at speeds comparable to the optical modulator and detector rates,

which are on the order of 50 - 100 GHz [263, 6]. Therefore, the proposed activation function circuit

would not be a limiting factor in the speed of the ONN.

2.8.2 Lookup table controller

We now consider the lookup table controller experimental setup, which uses a voltage lookup table

to implement the nonlinear electrical signal transformation, H. Specifically, the lookup table maps

the tapped out photogenerated current to a modulating voltage applied to the MZI phase shifter. To

produce the lookup table, two traces of MZI normalized output as a function of applied voltage to

the phase shifter and photogenerated current as a function of optical input power Pin are used. We

linearly combine these two traces to produce a 2-dimensional map of the optical output power of the

activation function circuit as a function of input power to the circuit (Pin) and normalized output

of MZI. The lookup table is determined by overlaying the target activation function on the map; it

is then implemented by a microcontroller. Figure 2.10 (c) shows the block diagram of the test setup

with a lookup table controller. The 1% tapped output of the DC is connected to a photodetector

with a responsivity R of 1 A/W. The photogenerated current of the photodetector is measured by

a B&K Precision 393 ammeter. As expected, the measured current is proportional to the optical

input power Ipd = αRPin. The digital output of the ammeter is sent to a microcontroller to specify

the modulating voltage for controlling the phase shifter. The voltage of the phase shifter is set

using a lookup table for a specific activation function. Figures 2.12(a) and 2.12(b) demonstrate two

activation function of sigmoid and modReLU [245] overlaid on the 2D power throughput map of the

activation function circuit, respectively. Figure 2.12(c) and 2.12(d) compare the target sigmoid

function and target modReLU function with their measurement result respectively. Both measured

responses agree very well with the target functions.

Using the lookup table to control the activation response provides a tool to heuristically select

an activation function response or to directly optimize the activation function using a training rou-

tine. This realization of a controllable optical-to-optical nonlinearity allows ONNs to be applied to

a broader classes of machine learning tasks [171]. However, implementing the lookup table on a

microcontroller limits the operation speed of the activation function circuit to sub-GHz range. For
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Figure 2.12: (a) Target sigmoid function overlaid on the 2D power throughput map of the non-
linear activation function, (b) target modReLU function overlaid on the 2D power throughput map
of the nonlinear activation function, (c) measurement result compared its target sigmoid function,
(d) measurement result compared to its target modReLU function.

a specific ONN application, one can use a moderate-speed flexible lookup table implemented on a

microcontroller or field-programmable gate array to optimize the activation function. The associated

transfer function can then be related to the optimized lookup table, and a piecewise linear approx-

imation can synthesize the optimized transfer function. In a high-speed (GHz) implementation,

the circuitry of the piecewise linear function can consist of an application-specific integrated circuit

in a high-speed analog/RF circuit platform. A number of technologies with high transit frequen-

cies can be utilized for this purpose. Examples include SiGe BiCMOS, i.e. combination of bipolar

and complementary metal–oxide–semiconductor (CMOS) technology, III-V technologies, and ad-

vanced CMOS technologies provide high-speed platforms for implementing over 50 GHz bandwidth

analog/RF circuits [263, 6, 73].

2.9 MNIST classification using experimental results

In this section, we numerically characterize the performance of the activation function on the bench-

mark machine learning task of classifying images from the MNIST dataset used in Section 2.6.2

using the experimentally measured data of the activation function from the fabricated chip. The

ONN setup is shown schematically in Fig. 2.13(a), and consists of a sequence of linear layers, cor-

responding to interferometer meshes [226], and nonlinear activation layers. The last layer is a drop

layer that reduces the vector to a length of 10 elements, suitable for one-hot detection across the 10

digit classes. After the drop layer, the optical intensity is detected and passed through a softmax
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Figure 2.13: (a) Schematic of the optical neural network configuration for classifying handwritten
digits from the MNIST dataset. The 28×28 pixel images are first Fourier transformed and cropped
before being fed into the ONN. (b) Classification accuracy achieved for various ONN configurations.
(c) Optical signal transmission through the neural network, averaged over all samples in the training
dataset.

function. As in Ref. [257], before entering the ONN, the images undergo a pre-processing stage

consisting of a Fourier transform step and a cropping step. These operations reduce the total size

of the input data from 28× 28 = 784 real-space pixels to 16 complex Fourier coefficients. We found

that an ONN with 16 inputs resulted in a reasonably high classification performance, but was still

feasible to simulate and train numerically.

In practice, the Fourier transformation and cropping steps could be experimentally achieved

completely passively with a Fourier optics setup [79].

We now compare the classification performance of the ONN on the digit recognition task for

several nonlinearity settings and quantify the optical transmission through the ONN. Figure 2.13(b-

c) show the classification accuracy of the ONN on the test dataset and the optical transmission

through the ONN as a function of the network depth. The transmission shown in Fig. 2.13(c)

is calculated as the mean over the transmission for all samples in the training dataset. These

simulations were performed using TensorFlow [4] and the neurophox ONN modeling framework

[176, 177], which implements a physical model of the ONN by parameterizing the linear layers in

terms of MZI interferometers and phase shifters and complex-valued field quantities. The ONN is

trained using the Adam optimizer [116] for 400 epochs with a batch size of 512.

In our comparison, we consider several variants of the ONN in Fig. 2.13(a): a linear ONN

with no activation, an electro-optic activation that uses settings similar to those in Ref. [257], and

an electro-optic activation implementing the complex modReLU function [245] corresponding to the

lookup table implementation measured from our prototype in Fig. 2.12. Unsurprisingly, we observe

in Fig. 2.13 that the linear ONN does not benefit from an increase in the network depth because
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a sequence of linear transformations is also a linear transformation. In other words, additional

linear layers without intermediate nonlinearities do not meaningfully increase the learning capacity

of the ONN. The linear ONN achieves a test accuracy of 82% and, because we have assumed lossless

interferometer meshes, it exhibits ideal optical transmission which is independent of the number of

layers.

In contrast, the electro-optic activation function with settings similar to those used in Section

2.6.2 increases its classification accuracy substantially with additional layers. This ONN achieves a

test accuracy of 93% with three layers. However, this relatively high accuracy comes with a high cost

in terms of optical signal attenuation. Although nonlinear amplitude responses inherently involve

signal attenuation, this activation configuration results in an optical transmission of -144 dB for

the network with three layers. In practice, such loss could be prohibitively high due to the finite

dynamic range of optical detectors at the output of the ONN.

However, by configuring the electro-optic activation lookup table to synthesize the modReLU

function, the optical transmission can be increased significantly. We observe that the modReLU

response results in an optical transmission of -4 dB for the 3 layer network, which is 140 dB larger

than the transmission through the network with the electro-optic activation settings from Ref. [257].

However, we note that the ONN with the modReLU activation does have a classification accuracy that

is reduced by 5% from the activation in Ref. [257]. However, the ONN with the modReLU activation

still outperforms the linear ONN. The performance of the ONN with the modReLU activation could

potentially be improved by adjusting (or directly training) the activation threshold. We emphasize

that the ability to synthesize the modReLU activation is a unique capability of this electro-optic

activation function architecture and is an important degree of freedom over all-optical nonlinearities.

We note that constraining the ONN to N = 16 Fourier coefficients from each input image does

somewhat limit accuracy of the MNIST task. Other works have demonstrated that increasing N

can lead to an increased classification accuracy in ONNs [178], approaching the performance of

conventional artificial neural networks.

2.10 Conclusion

In conclusion, we have introduced an architecture for synthesizing optical-to-optical nonlinearities

and demonstrated its use as a nonlinear activation function in a feed forward ONN. Using numerical

simulations, we have shown that such activation functions enable an ONN to be successfully applied

to two machine learning benchmark problems: (1) learning a multi-input XOR logic function, and

(2) classifying handwritten numbers from the MNIST dataset.

Rather than using all-optical nonlinearities, our activation architecture uses intermediate signal

pathways in the electrical domain which are accessed via photodetectors and phase modulators.
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Specifically, a small portion of the optical input power is tapped out which undergoes analog pro-

cessing before modulating the remaining portion of the same optical signal. Whereas all-optical

nonlinearities have largely fixed responses, a benefit of the electro-optic approach demonstrated here

is that signal amplification in the electronic domain can overcome the need for high optical signal

powers to achieve a significantly lower activation threshold. For example, we show that a phase

modulator Vπ of 10 V and an optical-to-electrical conversion gain of 57 dBΩ, both of which are

experimentally feasible, result in an optical activation threshold of 0.1 mW. We note that this non-

linearity is compatible with the in situ training protocol proposed in Ref. [101], which is applicable

to arbitrary activation functions.

Our activation function architecture can utilize the same integrated photodetector and modulator

technologies as the input and output layers of a fully-integrated ONN, and because each activation

function in our proposed scheme is a standalone analog circuit, they can be applied in parallel. This

means that an ONN using this activation suffers no reduction in processing speed, despite using

analog electrical components. The only trade off made by our design is an increase in latency due to

the electro-optic conversion process. However, we find that an ONN with dimension N = 100 has a

total prediction latency of 2.4 ns/layer, with approximately equal contributions from the propagation

of optical pulses through the interferometer mesh and from the electro-optic activation function.

Conservatively, we estimate the energy consumption of an ONN with this activation function to be

100 fJ/MAC, but this figure of merit could potentially be reduced by orders of magnitude using

highly efficient modulators and amplifier-free optoelectronics [170].

Additionally, we have also presented experimental results of this activation function circuit fab-

ricated on a SiN waveguide technology platform. The capabilities of the fabricated circuit were

demonstrated through two experimental setups. In the first experiment, only the nonlinear re-

sponse of the Mach-Zehnder modulator was used to generate the nonlinear activation function. In

this setup, a limited set of activation functions could be realized by varying the bias of the phase

shifter. In the second experiment, a lookup table was used to apply a nonlinear modulation signal

to the phase shifter which allowed realization of arbitrary nonlinear responses. While the prototype

demonstrated in this Chapter relied on thermo-optic modulation, the activation architecture can be

readily implemented using much faster modulation mechanisms that are widely used in GHz-rate

optical communications [211, 228, 16]. Faster modulation will allow an ONN using this activation

to achieve higher computational speeds and lower latencies than conventional digital processors.

Using numerical simulations from the experimentally measured data, we demonstrated that the

implemented activation functions improve the accuracy of optical neural networks on the benchmark

task of classifying images from the MNIST dataset. Our simulations revealed that the ability to

generate arbitrary nonlinear optical transfer functions provides a powerful tool to achieve high

performance while maintaining a low optical transmission loss. Compared to a linear ONN with

depth of three layers, using the activation from Ref. [257] improves the accuracy of the classification
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task by more than 11% but at the cost of over 140 dB optical transmission loss. However, by

configuring the lookup table to generate the modReLU activation [245] instead of the response from

Ref. [257], the optical transmission is improved by more than 140 dB with only 5% degradation in

classification accuracy.

Finally, we emphasize that in this activation function, the majority of the signal power remains

in the optical domain. There is no need to have a new optical source at each nonlinear layer of the

network, as is required in previously demonstrated electro-optic neuromorphic hardware [237, 183,

238] and reservoir computing architectures [130, 62]. While we have focused here on the application

of our architecture as an activation function in a feedforward ONN, the synthesis of low-threshold

optical nonlinearlities using this circuit could be of broader interest for optical computing as well as

microwave photonic signal processing applications.



Chapter 3

Optimization on universal linear

optical devices

In this chapter, we propose error-tolerant initialization routines and architectures for programmable

universal linear optical devices [177]. Universal optical devices can apply arbitrary unitary trans-

formations to a vector of input modes and provide a promising hardware platform for fast and

energy-efficient machine learning using light. We simulate the gradient-based optimization of ran-

dom unitary matrices on universal photonic devices composed of imperfect tunable interferometers.

If device components are initialized uniform-randomly, the locally-interacting nature of the mesh

components biases the optimization search space towards banded unitary matrices, limiting conver-

gence to random unitary matrices. We detail a procedure for initializing the device by sampling

from the distribution of random unitary matrices and show that this greatly improves convergence

speed. We also explore mesh architecture improvements such as adding extra tunable beamsplitters

or permuting waveguide layers to further improve the training speed and scalability of these devices.

3.1 Introduction

Universal multiport interferometers are optical networks that perform arbitrary unitary transforma-

tions on input vectors of coherent light modes. Such devices can be used in applications including

quantum computing (e.g. boson sampling, photon walks) [83, 42, 233, 93], mode unscramblers [9],

photonic neural networks [225, 102, 258], and finding optimal channels through lossy scatterers

[155]. While universal photonic devices have been experimentally realized at a relatively small scale

[225, 9], commercial applications such as hardware for energy-efficient machine learning and signal

processing can benefit from scaling the devices to up to N = 1000 modes. At this scale, fabrication

imperfections and components with scale-dependent sensitivities can negatively affect performance.

35
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Figure 3.1: Mesh diagram representing the locally interacting rectangular mesh for N = 8. The
inputs (and single-mode phase shifts at the inputs) are represented by blue triangles. Outputs are
represented by purple squares. The MZI nodes are represented by red dots labelled with sensitivity
index αnℓ (e.g., α44 = 7 is the most sensitive node). The nodes represent the Givens rotation Un
(in orange) at vertical layer ℓ (in green). Each photonic MZI node can be represented with 50:50
beamsplitters B (red) and phase shifters Rθ, Rϕ (orange) with required ranges 0 ≤ θ ≤ π and
0 ≤ ϕ < 2π.

One canonical universal photonic device is the rectangular multiport interferometer mesh [50]

shown in Figure 3.1 interfering N = 8 modes. In multiport interferometers, an N -dimensional vector

is represented by an array of modes arranged in N single-mode waveguides. A unitary operation

is applied to the input vector by tuning Mach-Zehnder interferometers (MZIs) represented by the

red dots of Figure 3.1. Each MZI is a two-port optical component made of two 50:50 beamsplitters

and two tunable single-mode phase shifters. Other mesh architectures have been proposed, such as

the triangular mesh [202] (shown in Appendix A.2), the universal cascaded binary tree architecture

[156], and lattice architectures where light does not move in a forward-only direction [184, 187, 186].

The scalability of optimizing mesh architectures, especially using gradient-based methods, is

limited by the ability of the locally interacting architecture to control the output powers in the mesh.

If phase shifts in the mesh are initialized uniform-randomly, light propagates through the device in
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a manner similar to a random walk. The off-diagonal, nonlocal elements of the implemented unitary

matrix tend to be close to zero because transitions between inputs and outputs that are far apart

have fewer paths (e.g., input 1 and output 8 in Figure 3.1 have a single path). The resulting mesh

therefore implements a unitary matrix with a banded structure that is increasingly pronounced as

the matrix size increases.

In many applications such as machine learning [225] and quantum computing [212, 42], we avoid

this banded unitary matrix behavior in favor of random unitary matrices. A random unitary matrix

is achieved when the device phase shifts follow a distribution derived from random matrix theory

[103, 277, 57, 232, 212]. In the random matrix theory model, we assign a sensitivity index to each

component that increases towards the center of the mesh, as shown in Figure 3.1. The more sensitive

components toward the center of the mesh require higher transmissivities and tighter optimization

tolerances. If the required tolerances are not met, the implemented unitary matrix begins to show

the undesired banded behavior.

In Section 3.2, we introduce the photonic mesh architecture and sources of error that can ex-

acerbate the banded unitary matrix problem. In Section 3.3, we explicitly model the component

settings to implement a random unitary matrix and ultimately avoid the banded unitary matrix

problem. We propose a “Haar initialization” procedure that allows light to propagate uniformly to

all outputs from any input. We use this procedure to initialize the gradient-based optimization of a

photonic mesh to learn unknown random unitary matrices given training data. We show that this

optimization converges even in the presence of significant simulated fabrication errors.

In Sections 3.4 and 3.5, we propose and simulate two alterations to the mesh architecture that

further improve gradient-based optimization performance. First, we add redundant MZIs in the

mesh to reduce convergence error by up to five orders of magnitude. Second, we permute the mesh

interactions while maintaining the same number of tunable components, which increases allowable

tolerances of phase shifters, decreases off-diagonal errors, and improves convergence time.

3.2 Photonic Mesh

We define the photonic mesh when operated perfectly and then discuss how beam splitter or phase

shift errors can affect device performance.

3.2.1 Photonic unitary implementation

A single-mode phase shifter can perform an arbitrary U(1) transformation eiϕ on its input. A phase-

modulated Mach-Zehnder interferometer (MZI) with perfect (50 : 50) beamsplitters can apply to its
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inputs a unitary transformation U of the form:

U(θ, ϕ) := RϕBRθB

=
1

2

[
eiϕ 0

0 1

][
1 i

i 1

][
eiθ 0

0 1

][
1 i

i 1

]

= ie
iθ
2

[
eiϕ sin θ

2 eiϕ cos θ2
cos θ2 − sin θ

2

]
,

(3.1)

where B is the beamsplitter operator, Rθ, Rϕ are upper phase shift operators. Equation 3.1 is

represented diagrammatically by the configuration in Figure 3.1.1 If one or two single-mode phase

shifters are added at the inputs, we can apply an arbitrary SU(2) or U(2) transformation to the

inputs, respectively.

We define the transmissivity and reflectivity of the MZI as:

t := cos2
(
θ

2

)
= |U12|2 = |U21|2

r := sin2
(
θ

2

)
= 1− t = |U11|2 = |U22|2.

(3.2)

In this convention, when θ = π, we have r = 1, t = 0 (the MZI “bar state”), and when θ = 0, we

have r = 0, t = 1 (the MZI “cross state”).

If there are N input modes and the interferometer is connected to waveguides n and n+1 then we

can embed the 2× 2 unitary U from Equation 3.1 in N -dimensional space with a locally-interacting

unitary “Givens rotation” Un defined as:

Un :=

n n+ 1






1 · · · 0 0 · · · 0
...

. . .
...

...
...

0 · · · U11 U12 · · · 0 n

0 · · · U21 U22 · · · 0 n+ 1
...

...
...

. . .
...

0 · · · 0 0 · · · 1

. (3.3)

All diagonal elements are 1 except those labeled U11 and U22, which have magnitudes of
√
r =
√
1− t,

and all off-diagonal elements are 0 except those labeled U12 and U21, which have magnitudes of
√
t.

1Other configurations with two independent phase shifters between the beamsplitters B are ultimately equivalent
for photonic meshes [158].
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Arbitrary unitary transformations can be implemented on a photonic chip using only locally

interacting MZIs [202]. In this chapter, we focus on optimizing a rectangular mesh [50] of MZIs;

however, our ideas can be extended to other universal schemes, such as the triangular mesh [157],

as well.

In the rectangular mesh scheme [50] of Figure 3.1, we represent ÛR ∈ U(N) in terms ofN(N−1)/2
locally interacting Givens rotations Un and N single-mode phase shifts at the inputs represented by

diagonal unitary D(γ1, γ2, . . . γN ):

ÛR :=

N∏

ℓ=1

∏

n∈Sℓ,N

Un(θnℓ, ϕnℓ) ·D(γ1, γ2, . . . γN ), (3.4)

where our layer-wise product left-multiplies from ℓ = N to 1,2 the single-mode phase shifts are

γn ∈ [0, 2π), and where the Givens rotations are parameterized by θnℓ ∈ [0, π], ϕnℓ ∈ [0, 2π).3

We define the top indices of each interacting mode for each vertical layer as the set Sℓ,N = {n ∈
[1, 2, . . . N − 1] | n (mod 2) ≡ ℓ (mod 2)}. This vertical layer definition follows the convention of

Refs. [106, 102] and is depicted in Figure 3.1, where ℓ represents the index of the vertical layer.

3.2.2 Beamsplitter error tolerances

The expressions in Equations 3.1 and 3.4 assume perfect fabrication. In practice, however, we would

like to simulate how practical devices with errors in each transfer matrix B,Rϕ, Rθ in Equation 3.1

impact optimization performance.

In fabricated chip technologies, imperfect beamsplitters B can have a split ratio error ϵ that

change the behavior of the red 50:50 coupling regions in Figure 3.1 or B in Equation 3.1. The

resultant scattering matrix Uϵ with imperfect beamsplitters Bϵ can be written as:

Bϵ :=
1√
2

[√
1 + ϵ i

√
1− ϵ

i
√
1− ϵ

√
1 + ϵ

]

Uϵ := RϕBϵRθBϵ.

(3.5)

As shown in Appendix A.1, if we assume both beamsplitters have identical ϵ, we find tϵ := t(1−ϵ2) ∈
[0, 1− ϵ2] is the realistic transmissivity, rϵ := r+ t · ϵ2 ∈ [ϵ2, 1] is the realistic reflectivity, and t, r are

the ideal transmissivity and reflectivity defined in Equation 3.2.

The unitary matrices in Equation 3.5 cannot express the full transmissivity range of the MZI, with

errors of up to ϵ2 in the transmissivity, potentially limiting the performance of greedy progressive

photonic algorithms [37, 159, 71]. Our Haar phase theory, which we develop in the following section,

2In general, for matrix products for a sequence {Mℓ}, we define the multiplication order
∏N

ℓ=1Mℓ =
MNMN−1 · · ·M1.

3Since γn, ϕnℓ are periodic phase parameters, they are in half-open intervals [0, 2π). In contrast, any θnℓ ∈ [0, π]
must be in a closed interval to achieve all transmissivities tnℓ ∈ [0, 1].
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determines acceptable interferometer tolerances for calibration of a “perfect mesh” consisting of

imperfect beamsplitters [158] given large N . We will additionally show that simulated photonic

backpropagation [102] with adaptive learning can adjust to nearly match the performance of perfect

meshes with errors as high as ϵ = 0.1 for meshes of size N = 128.

3.2.3 Phase shift tolerances

Another source of uncertainty in photonic meshes is the phase shift tolerances of the mesh which

affect the matrices Rθ, Rϕ of Equation 3.1, shown in orange in Figure 3.1. Error sources such as

thermal crosstalk or environmental drift may result in slight deviance of phase shifts in the mesh

from intended operation. Such errors primarily affect the control parameters θnℓ that control light

propagation in the mesh by affecting the MZI split ratios. This nontrivial problem warrants a

discussion of mean behavior and sensitivities (i.e., the distribution) of θnℓ needed to optimize a

random unitary matrix.

3.3 Haar Initialization

3.3.1 Cross state bias and sensitivity index

The convergence of global optimization depends critically on the sensitivity of each phase shift. The

gradient descent optimization we study in this chapter converges when the phase shifts are correct to

within some acceptable range. This acceptable range can be rigorously defined in terms of average

value and variance of phase shifts in the mesh that together define an unbiased (“Haar random”)

unitary matrix.4 To implement a Haar random unitary, some MZIs in the mesh need to be biased

towards cross state (tnℓ near 1, θnℓ near 0) [37, 212]. This cross state bias correspondingly “pinches”

the acceptable range for transmissivity and phase shift near the limiting cross state configuration,

resulting in higher sensitivity, as can be seen in Figure 3.3(b).

For an implemented Haar random unitary matrix, low-tolerance, transmissive MZIs are located

towards the center of a rectangular mesh [212, 37] and the apex of a triangular mesh as proven in Ap-

pendix A.2. For both the triangular and rectangular meshes, the cross state bias and corresponding

sensitivity for each MZI depends only on the total number of reachable waveguides ports, as proven

in Appendix A.8. Based on this proof, we define the sensitivity index αnℓ := |Inℓ|+ |Onℓ| −N − 1,5

where Inℓ and Onℓ are the subsets of input and output waveguides reachable by light exiting or enter-

ing the MZI, respectively, and |·| denotes set size. Figure 3.1 and Figure 3.2(a) show the sensitivity

index for the rectangular mesh, which clearly increases towards the center MZI.

4A Haar random unitary is defined as Gram-Schmidt orthogonalization of N standard normal complex vectors
[232, 212].

5Note that 1 ≤ αnℓ ≤ N − 1, and there are always N − αnℓ MZIs that have a sensitivity index of αnℓ.
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(a) Sensitivity index: αn`
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(b) Reflectivity: 〈rn`〉 = (αn` + 1)−1
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(c) Phase: θn`/2
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(d) Haar phase: ξn` = tαn`n`
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(e) Haar random θn`
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(f) Uniform random θn`
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Figure 3.2: (a) The sensitivity index αnℓ for N = 64. (b) Checkerboard plot for the average
reflectivity ⟨rnℓ⟩ in a rectangular mesh. (c) Haar-random matrix and run the decomposition in Ref.
[50] to find phases approaching cross state in the middle of the mesh. (d) The Haar phase ξnℓ for
the rectangular mesh better displays the randomness. (e, f) Field measurements (absolute value)
from propagation at input 32 in (e) Haar and (f) uniform random initialized rectangular meshes
with N = 64.

3.3.2 Phase shift distributions and Haar phase

The external ϕnℓ, γn phase shifts do not affect the the transmissivity tnℓ and therefore obey uniform

random distributions [212]. In contrast, the θnℓ phase shifts have a probability density function

(PDF) that depends on αnℓ [212]:

Pαnℓ

(
θnℓ
2

)
= αnℓ sin

(
θnℓ
2

)[
cos

(
θnℓ
2

)]2αnℓ−1

. (3.6)

The general shape of this distribution is presented in Figure 3.3(b), showing how an increase in

αnℓ biases θnℓ towards the cross state with higher sensitivity.

We define the Haar phase ξnℓ as the cumulative distribution function (CDF) of θnℓ/2 starting
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from θnℓ/2 = π/2:

ξnℓ :=

∫ θnℓ/2

π/2

Pαnℓ
(θ)dθ. (3.7)

Using Equations 3.6 and 3.7, we can define ξnℓ(θnℓ) ∈ [0, 1] that yields a Haar random matrix:

ξnℓ =

[
cos2

(
θnℓ
2

)]αnℓ

= tαnℓ

nℓ , (3.8)

where tnℓ represents the transmissivity of the MZI, which is a function of θnℓ as defined in Equation

3.2.

3.3.3 Haar initialization

In the physical setting, it is useful to find the inverse of Equation 3.8 to directly set the measurable

transmissivity tnℓ of each MZI using a uniformly varying Haar phase ξnℓ ∼ U(0, 1), a process we call

“Haar initialization” shown in Figure 3.2(c, d):

tnℓ =
αnℓ
√
ξnℓ

θnℓ = 2arccos
√
tnℓ = 2arccos

2αnℓ
√
ξnℓ,

(3.9)

where the expression for θnℓ is just a rearrangement of Equation 3.2.

Haar initialization can be achieved progressively using a procedure similar to that in Ref. [159].

If the phase shifters in the mesh are all well-characterized, the transmissivities can be directly set

[212]. We will show in Section 3.5 that Haar initialization improves the convergence speed of gradient

descent optimization significantly.

We can also use Equation 3.9 to find the average transmissivity and reflectivity for an MZI

parameterized by αnℓ as is found through simulation in Ref. [37]:

⟨tnℓ⟩ =
∫ 1

0

dξnℓ
αnℓ
√
ξnℓ =

αnℓ
αnℓ + 1

⟨rnℓ⟩ =
1

αnℓ + 1
=

1

|Inℓ|+ |Onℓ| −N
.

(3.10)

The average reflectivity ⟨rnℓ⟩ shown in Figure 3.2(b) gives a simple interpretation for the sensitivity

index shown in Figure 3.2(a). The average reflectivity is equal to the inverse of the total number of

inputs and outputs reachable by the MZI minus the number of ports on either side of the device,

N . This is true regardless of whether αnℓ is assigned for a triangular or rectangular mesh.

To see what the Haar initialization has accomplished, we can compare the field propagation

through the rectangular mesh from a single input when Haar initialized versus uniform initialized

in Figure 3.2(e). Physically, this corresponds to light in the mesh spreading out quickly from the

input of the mesh and “interacting” more near the boundaries of the mesh (inputs, outputs, top, and
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Figure 3.3: (a) Plot of the relationship between ξα and θ. (b) We show that phase shift standard
deviation σθ;α decreases as α increases. (c) A plot of σθ;α as α increases. (d) The transmissivity
of an MZI component as a function of a periodic Haar phase has a power law relationship. The
periodic Haar phase ξ̃α is mapped to the Haar phase by a function ξ : R → [0, 1] as discussed in
Appendix A.6.

bottom), as compared to the center of the mesh which has high transmissivity. In contrast, when

phases are randomly set, the light effectively follows a random walk through the mesh, resulting in

the field propagation pattern shown in Figure 3.2(f).

3.3.4 Tolerance dependence on N

While Haar initialization is based on how the average component reflectivity scales with N , opti-

mization convergence and device robustness ultimately depend on how phase shift tolerances scale

with N . The average sensitivity index in the mesh is ⟨αnℓ⟩ = (N + 1)/3. As shown in Figure

3.3(b, c), the standard deviation σθ;α over the PDF Pα decreases as α increases. Therefore, a phase

shifter’s allowable tolerance, which roughly correlates with σθ;α, decreases as the total number of

input and output ports affected by that component increases. Since ⟨αnℓ⟩ increases linearly with N ,
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the required tolerance gets more restrictive at large N , as shown in Figure 3.3(c). We find that the

standard deviation is on the order 10−2 radians for most values of N in the specified range. Thus,

if thermal crosstalk is ignored [225], it is possible to implement a known random unitary matrix in

a photonic mesh assuming perfect operation. However, we concern ourselves with on-chip optimiza-

tion given just input/output data, in which case the unitary matrix is unknown. In such a case, the

decreasing tolerances do pose a challenge in converging to a global optimum as N increases. We

demonstrate this problem for N = 128 in Section 3.5.

To account for the scalability problem in global optimization, one strategy may be to design a

component in such a way that the mesh MZIs can be controlled by Haar phase voltages as in Figure

3.3(d) and Equation 3.9. The transmissivity dependence on a periodic Haar phase (shown in Figure

3.3(d) and discussed in Appendix A.6), is markedly different from the usual sinusoidal dependence

on periodic θnℓ. The MZIs near the boundary vary in transmissivity over a larger voltage region

than the MZIs near the center, where only small voltages are needed get to full transmissivity. This

results in an effectively small control tolerance near small voltages. This motivates the modifications

to the mesh architecture which we discuss in the next section.

3.4 Architecture Modifications

We propose two architecture modifications that can relax the transmissivity tolerances in the mesh

discussed in Section 3.3 and result in significant improvement in optimization.

First, by adding extra tunable MZIs, it is possible to greatly accelerate the optimization of a

rectangular mesh to an unknown unitary matrix. The addition of redundant tunable layers to a

rectangular mesh is depicted in green in Figure 3.4(a). The authors in Ref. [37] point out that using

such “underdetermined meshes” (number of inputs less than the number of tunable layers in the

mesh) can overcome photonic errors and restore fidelity in unitary construction algorithms. Adding

layers to the mesh increases the overall optical depth of the device, but embedding smaller meshes

with extra beamsplitter layers in a rectangular mesh of an acceptable optical depth does not pose

intrinsic waveguide loss-related problems.

Another architectural modification to improve training on a rectangular mesh is to shuffle outputs

at regular intervals within the mesh. This shuffling relaxes component tolerances and uniformity

of the number of paths for each input-output transition. We use this intuition to formally define a

permuting rectangular mesh. For simplicity,6 assume N = 2K for some positive integer K. Define

“rectangular permutation” operations Pk that allow inputs to interact with waveguides at most 2k

away for k < K. These rectangular permutation blocks can be implemented using a rectangular

mesh composed of MZIs with fixed cross state phase shifts, as shown in Figure 3.4(b), or using

low-loss waveguide crossings.

6If N is not a power of 2, then one might consider the following approximate design: K = ⌈log2N⌉. Define

b(K) = K
√
N , and let each Pk have ⌈bk⌉ layers.
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(a) Redundant rectangular mesh (RRM)
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(b) Permuting rectangular mesh (PRM)

Figure 3.4: (a) A 16 × 16 rectangular mesh (red). Extra tunable layers (green) may be added to
significantly reduce convergence time. (b) A 16-input, 30-layer permuting rectangular mesh. The
rectangular permutation layer is implemented using either waveguide crossings or cross state MZIs
(gray).

We now add permutation matrices P1, P2, . . . PK−1 into the middle of the rectangular mesh as

follows:

ÛPR :=MK

(
K−1∏

k=1

PkMk

)

Mk :=

min(k⌈N
K ⌉,N)∏

ℓ=(k−1)⌈N
K ⌉

∏

n∈Sℓ,N

Un(θnℓ, ϕnℓ),

(3.11)

where ⌈x⌉ represents the nearest integer larger than x.

There are two operations per block k: an ⌈NK ⌉-layer rectangular mesh which we abbreviate as

Mk, and the rectangular permutation mesh Pk where block index k ∈ [1 · · ·K − 1]. This is labelled

in Figure 3.4(b).
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3.5 Simulations

Now that we have discussed the mesh modifications and Haar initialization, we simulate global

optimization to show how our framework can improve convergence performance by up to five orders

of magnitude, even in the presence of fabrication error.

3.5.1 Mesh initialization

We begin by discussing the importance of initializing the mesh to respect the cross state bias and

sensitivity of each component for Haar random unitary matrices discussed in Section 3.3. Uniform

random phase initialization is problematic because it is agnostic of the sensitivity and average

behavior of each component. We define this distribution of matrices as UR(N,L) for a rectangular

mesh for N inputs and L layers. As shown previously in Figure 3.2(f), any given input follows a

random walk-like propagation if phases are initialized uniform-randomly, so there will only be non-

zero matrix elements within a “bandsize” about the diagonal. This bandsize decreases as circuit size

N increases as shown in Figure 3.5.

UR(8, 8) UR(32, 32) UR(256, 256) UR(1024, 1024)

UR(8, 16) UR(32, 64) UR(256, 512) UR(1024, 2048)

UPR(8) UPR(32) UPR(256) UPR(1024)

Figure 3.5: Elementwise absolute values of unitary matrices resulting from rectangular (U ∼ UR)
and permuting rectangular (U ∼ UPR) meshes where meshes are initialized with uniform-random
phases.
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We compare the bandsizes of banded unitary matrices in simulations qualitatively as we do in

Figure 3.5 or quantitatively as we do in Appendix A.3. We randomly generate U ∼ UR(N,N),

U ∼ UPR(N) (permuting rectangular mesh with N tunable layers), and U ∼ UR(N,N + δN)

(redundant rectangular mesh with δN extra tunable layers). Figure 3.5 shows a significant reduction

in bandsize as N grows larger for rectangular meshes. This phenomenon is not observed with

permuting rectangular meshes which generally have the same bandsize as Haar random matrices

(independent of N) as shown in in Figure 3.5 and Appendix A.3. This correlates with permuting

rectangular meshes having faster optimization and less dependence on initialization.

Instead of initializing the mesh using uniform random phases, we use Haar initialization as

in Equation 3.9 to avoid starting with a banded unitary configuration. This initialization, which

we recommend for any photonic mesh-based neural network application, dramatically improves

convergence because it primes the optimization with the right average behavior for each component.

We find in our simulations that as long as the initialization is calibrated towards higher transmissivity

(θnℓ near 0), larger mesh networks can also have reasonable convergence times similar to when the

phases are Haar-initialized.

The proper initialization of permuting rectangular meshes is less clear because the tolerances and

average behavior of each component have not yet been modeled. Our proposal is to initialize each

tunable block Mk as an independent mesh using the same definition for αnℓ, except replacing N

with the number of layers in Mk, ⌈N/K⌉. This is what we use as the Haar initialization equivalent

in the permuting rectangular mesh case, although it is possible there may be better initialization

strategies for the nonlocal mesh structure.

3.5.2 Optimization problem and synthetic data

After initializing the photonic mesh, we proceed to optimize the mean square error cost function for

an unknown Haar random unitary U :

minimize
θnℓ,ϕnℓ,γn

1

2N

∥∥∥Û(θnℓ, ϕnℓ, γn)− U
∥∥∥
2

F
, (3.12)

where the estimated unitary matrix function Û maps N2 phase shift parameters θnℓ, ϕnℓ, γn to U(N)

via Equations 3.4 or 3.11, and ∥ · ∥F denotes the Frobenius norm. Since trigonometric functions

parameterizing Û are non-convex, we know that Equation 3.12 is a non-convex problem. The non-

convexity of Equation 3.12 suggests learning a single unitary transformation in a deep neural network

might have significant dependence on initialization.

To train the network, we generate random unit-norm complex input vectors of sizeN and generate

corresponding labels by multiplying them by the target matrix U . We use a training batch size of 2N .

The synthetic training data of unit-norm complex vectors is therefore represented by X ∈ CN×2N .

The minibatch training cost function is similar to the test cost function, Ltrain = ∥ÛX − UX∥2F .
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The test set is the identity matrix I of size N ×N . The test cost function, in accordance with the

training cost function definition, thus matches Equation 3.12.

3.5.3 Training algorithm

We simulate the global optimization of a unitary mesh using automatic differentiation in tensorflow,

which can be physically realized using the in situ backpropagation procedure in Ref. [102]. This op-

tical backpropagation procedure physically measures ∂Ltrain/∂θnℓ using interferometric techniques,

which can be extended to any of the architectures we discuss in this chapter.

The on-chip backpropagation approach is also likely faster for gradient computation than other

training approaches such as the finite difference method mentioned in past on-chip training proposals

[225]. We find empirically that the Adam update rule (a popular first-order adaptive update rule

[118]) outperforms standard stochastic gradient descent for the training of unitary networks. If

gradient measurements for the phase shifts are stored during training, adaptive update rules can

be applied using successive gradient measurements for each tunable component in the mesh. Such

a procedure requires minimal computation (i.e., locally storing the previous gradient step) and can

act as a physical test of the simulations we will now discuss. Furthermore, we avoid quasi-Newton

optimization methods such as L-BFGS used in Ref. [37] that cannot be implemented physically as

straightforwardly as first-order methods.

The models were trained using our open source simulation framework neurophox 7 using a

more general version of the vertical layer definition proposed in Refs. [106, 102]. The models

were programmed in tensorflow [2] and run on an NVIDIA GeForce GTX1080 GPU to improve

optimization performance.

3.5.4 Architecture comparison

We now compare training results for rectangular, redundant rectangular, and permuting rectangular

meshes given N = 128. In our comparison of permuting rectangular meshes and rectangular meshes,

we analyze performance when beamsplitter errors are distributed throughout the mesh as either

ϵ = 0 or ϵ ∼ N (0, 0.01) and when the θnℓ are randomly or Haar-initialized (according to the PDF in

Equation 3.6). We also analyze optimization perforamnces of redundant rectangular meshes where

we vary the number of vertical MZI layers.

From our results, we report five key findings:

1. Optimization of N = 128 rectangular meshes results in significant off-diagonal errors due to

bias towards the banded matrix space of UR(128), as shown in Figure 3.7.

7To reproduce the results of this chapter, the reader can be directed to neurophox, an open-source Python package
that implements the optimizations and simulations of this paper in numpy and tensorflow. The exact code used to
generate the results is provided in the neurophox-notebooks repository.

https://github.com/solgaardlab/neurophox
https://github.com/solgaardlab/neurophox
https://github.com/solgaardlab/neurophox-notebooks
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2. Rectangular meshes converge faster when Haar-initialized than when uniformly random ini-

tialized, as in Figure 3.7, in which case the estimated matrix converges towards a banded

configuration shown in Appendix A.7.

3. Permuting rectangular meshes converge faster than rectangular meshes despite having the

same number of total parameters as shown in Figure 3.7.

4. Redundant rectangular meshes, due to increase in the number of parameters, have up to

five orders of magnitude better convergence when the number of vertical layers are doubled

compared to rectangular and permuting rectangular meshes, as shown in Figure 3.6.

5. Beamsplitter imperfections slightly reduce the overall optimization performance of permut-

ing and redundant rectangular meshes, but reduce the performance of the rectangular mesh

significantly. (See Figure 3.7 and Appendix A.4.)

0 2500 5000 7500 10000 12500 15000 17500 20000

Iteration

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

M
ea

n
sq

ua
re

er
ro

r
co

st
:

1
2
N

∥ ∥ ∥Û
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Figure 3.6: A comparison of test error in tensorflow for N = 128 between rectangular (RM),
permuting rectangular (PRM), and redundant rectangular (RRM) meshes for: 20000 iterations,
Adam update, learning rate of 0.0025, batch size of 256. Ideal = Haar random initialized θnℓ with
ϵ = 0. δN is the additional layers added in the redundant mesh. We stopped the δN = 128 run
within 4000 iterations when it reached convergence within machine precision. Redundant meshes
with 32 additional layers converge better than permuting rectangular meshes, and with just 16
additional layers, we get almost identical performance.

The singular value decomposition (SVD) architecture discussed in Refs. [157, 225] consists of op-

tical lossy components flanked on both sides by rectangular meshes and are capable of implementing

any linear operation with reasonable device input power. Note that with some modifications (e.g.
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treating loss and gain elements like nonlinearities in the procedure of Ref. [102]), SVD architec-

tures can also be trained physically using in situ backpropagation. We simulate the gradient-based

optimization of SVD architectures using automatic differentiation in Appendix A.5.

3.6 Discussion

3.6.1 Haar initialization

For global optimization and robustness of universal photonic meshes, it is important to consider the

required biases and sensitivities for each mesh component. Implementing any Haar random matrix

requires that each component independently follows an average reflectivity within some tolerance.

This requirement becomes more restrictive with the number of input and output ports accessible by

each mesh component. For the rectangular mesh, this means the center mesh components are close

to cross state and the most sensitive.

In a Haar-initialized mesh, as shown in Figure 3.2, the light injected into a single input port

spreads out to all waveguides in the device uniformly regardless of N . This is a preferable initializa-

tion for global optimization because Haar random matrices require this behavior. In contrast, when

randomly initializing phases, the light only spreads out over a limited band of outputs. This band

gets relatively small compared to the mesh gets larger as shown in Figure A.2.

The average reflectivities given by Haar initialization may be useful for inverse design approaches

[189] for compact tunable or passive multiport interferometers. The component tolerances may

inform how robust phase shifters need to be given error sources such as thermal crosstalk [225]. The

thermal crosstalk might make it difficult to achieve required tolerances for devices interfering up to

N = 1000 modes that generally have phase shift tolerances just above 10−2 radians.8

In our simulations in Section 3.5, we assume that the control parameter for photonic meshes

is linearly related to the phase shift. However, in many current phase shifter implementations,

such as thermal phase shifters [225], the phase is a nonlinear function of the control parameter

(i.e., the voltage) and has minimum and maximum values, unlike the unbounded phase used in

our optimization. In addition, like the Haar phase in our theory, the voltage acts as the CDF for

transmissivities in the physical device, up to a normalization factor. Particular attention needs to be

given to phase uncertainty as a function of voltage, since the Haar random distribution of internal

MZI phases has small variance for large N , as we show in Figure 3.3(c). As mentioned in Section

3.3, the ideal transmissivity-voltage dependence with this consideration would be identical to the

transmissivity vs Haar phase dependence in Figure 3.3(d).

8Ref. [225] propose a standard deviation of ∼ 10−3 might be possible with further circuit characterization, which
might be scalable based on Figure 3.3(c).
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3.6.2 Applications of mesh optimization

Meshes can be tuned using either self-configuration [202, 157] or global optimizations (gradient-based

[102] or derivative-free [240]). The algorithmic optimizations proposed in Refs. [202, 157] assume

that each component in the mesh can cover the entire split ratio range, which is not the case in

presence of 50:50 beamsplitter errors. This ultimately leads to lower fidelity in the implemented

unitary operation, which can be avoided using a double-MZI architecture [158, 256] or a vertical

layer-wise progressive algorithm [159]. We explore a third alternative to overcome photonic errors;

gradient-based global optimization is model-free and, unlike algorithmic approaches, can efficiently

tune photonic neural networks [102]. This model-free property makes gradient-based optimization

robust to fabrication error; we show in Figure 3.7(a) that meshes with split ratio error variances

of up to σϵ = 0.1 can be optimized nearly as well as a perfect mesh, particularly for permuting

rectangular meshes.
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Figure 3.7: We implement six different optimizations for N = 128 where we vary the choice of
permuting rectangular mesh (PRM) or rectangular mesh (RM); the initialization (random θnℓ or
Haar-initialized θnℓ); and photonic transmissivity error displacements (ϵ = 0 or ϵ ∼ N (0, 0.01), where
σ2
ϵ = 0.01 is the variance of the beamsplitter errors). Conditions: 20000 iterations, Adam update,

learning rate of 0.0025, batch size of 256, simulated in tensorflow. (a) Comparison of optimization
performance (defaults are Haar initialization and ϵnℓ = 0 unless otherwise indicated). Optimized
error magnitude spatial map for (b) rectangular mesh shows higher off-diagonal errors and than
(c) permuting rectangular. The optimized θnℓ phase shifts (see Appendix A.6) for (d) rectangular
meshes are close to zero (cross state) near the center as opposed to (e) permuting rectangular meshes
which have a striped pattern (likely due to initialization). NOTE: by |·|, we refer to the elementwise
norm.

In the regime of globally optimized meshes, we propose two strategies to modify the rectangular

architecture: adding waveguide permutation layers and adding extra tunable vertical MZI layers.

Both approaches relax the cross state requirements on the MZIs and accelerate the mesh optimization

process. Nonlocal interference works by allowing inputs that are far away physically in the mesh to



CHAPTER 3. OPTIMIZATION ON UNIVERSAL LINEAR OPTICAL DEVICES 52

interact. These approaches are inspired by several recent proposals in machine learning and coherent

photonics to design more error tolerant and efficient meshes, many of which use single layers of MZIs

and nonlocal waveguide interactions [75, 151, 71, 106]; such designs can also be considered to be

in the same class of permuting architectures as our proposed permuting rectangular mesh. Adding

extra tunable vertical layers, as proposed in Ref. [37], simply adds more tunable paths for the light

to achieve a desired output. As shown in Figure 3.7, we achieve up to five orders of magnitude

improvement in convergence at the expense of doubling the mesh size and parameter space.

Like permuting rectangular meshes, multi-plane light conversion successfully applies the non-

local interference idea for efficient spatial mode multiplexing [127, 128]. In this protocol, alternating

layers of transverse phase profiles and optical Fourier transforms (analogous to what our rectangular

permutations accomplish) are applied to reshape input modes of light [127, 128]. A similar concept

is used in unitary spatial mode manipulation, where stochastic optimization of deformable mirror

settings allow for efficient mode conversion [163]. Thus, the idea of efficient unitary learning via a

Fourier-inspired permuting approach has precedent in contexts outside of photonic MZI meshes.

An on-chip optimization for multi-plane light conversion has been accomplished experimentally

in the past using simulated annealing [240]. The success of simulated annealing in experimentally

training small unitary photonic devices [240] (rather than gradient descent as is used in this chapter)

suggests there are other algorithms aside from gradient descent that may effectively enable on-chip

training.

We propose that similar simulated annealing approaches might be made more efficient by sam-

pling Haar phases from uniform distributions and flashing updates onto the device. Similar derivative-

free optimizations may also be useful for quantum machine learning [216, 215, 113]. Whether such

approaches can compete with backpropagation for classical applications remains to be investigated.

For experimental on-chip tuning, simulated annealing has the attractive property of only requiring

output detectors. For practical machine learning applications, however, there is currently more lit-

erature for backpropagation-based optimization. Furthermore, gradient-based approaches allow for

continuous control of phase shifters during the optimization.

Our tensorflow simulations may be useful in the design of optical recurrent neural networks

(RNNs) that use unitary operators parameterized by photonic meshes. Such “unitary RNNs”

(URNNs) have already been simulated on conventional computers and show some promise in syn-

thetic long-term memory tasks [106, 56]. Unitary RNNs are physically implementable using a single

mesh with optical nonlinearities and recurrent optoelectronic feedback, suggesting that the architec-

ture discussed in this chapter is a scalable, energy-efficient option for machine learning applications.

It is possible that some tunable features such as the “bandedness” of unitaries implemented by

rectangular MZI meshes can be useful (e.g. as an attention mechanism in sequence data) for certain

deep learning tasks that use URNNs.
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3.7 Conclusion

The scalability of gradient-based optimization of Haar random unitary matrices on universal photonic

meshes is limited by small reflectivities and MZI phase shifter sensitivities arising from the constraint

of locally interacting components. As shown in Section 3.3, the required average reflectivity and

sensitivity for each MZI is inversely related to the total number of inputs and outputs affected

by the MZI. If the tolerance requirements are not met by the physical components, optimization

algorithms will have difficulty converging to a target unitary operator. As shown in Section 3.5 for

the case of N = 128, convergence via in situ backpropagation is generally not achieved if phase

shifters are initialized randomly. However, Haar initialization can sufficiently bias the optimization

for convergence to a desired random unitary matrix, even in the presence of significant simulated

beamsplitter fabrication errors.

In Section 3.4, we propose adding extra tunable beamsplitters or mesh nonlocalities to accelerate

mesh optimization. Naive (uniform random) initialization on a standard photonic mesh has difficulty

learning random unitary matrices via gradient descent. By introducing non-localities in the mesh,

we can improve optimization performance without the need for extra parameters. A Haar-initialized

redundant architecture can achieve five orders of magnitude less mean square error for a Haar random

unitary matrix and decrease optimization time to such a matrix by at least two orders of magnitude,

as shown in Figure 3.6. Our findings suggest that architecture choice and initialization of photonic

mesh components may prove important for increasing the scalability and stability of reconfigurable

universal photonic devices and their many classical and quantum applications [9, 225, 233, 113, 215,

216, 11, 157, 156].
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Chapter 4

Photonic quantum programmable

gate arrays

In this chapter, we present a photonic integrated circuit architecture for a quantum programmable

gate array (QPGA) capable of preparing arbitrary quantum states and operators [21]. The architec-

ture consists of a lattice of phase-modulated Mach-Zehnder interferometers, which perform rotations

on path-encoded photonic qubits, and embedded quantum emitters, which use a two-photon scat-

tering process to implement a deterministic controlled-σz operation between adjacent qubits. By

appropriately setting phase shifts within the lattice, the device can be programmed to implement

any quantum circuit without hardware modifications. We provide algorithms for exactly preparing

arbitrary quantum states and operators on the device and we show that gradient-based optimiza-

tion can train a simulated QPGA to automatically implement highly compact approximations to

important quantum circuits with near-unity fidelity.

4.1 Introduction

There has been growing interest in universal photonic devices which can be dynamically reconfigured

to implement any linear optical transformation to a set of coherent optical modes. [202, 157, 50, 92]

These devices are often implemented as a mesh of phase-modulated Mach-Zehnder interferometers

(MZIs) which can be configured progressively [202] or simultaneously [178] to apply arbitrary unitary

transformations to an input vector of spatial modes. Such devices have a wide range of applications

in classical information processing [92, 160, 9, 276, 186, 185], and integrated universal photonic

circuits provides an especially promising hardware platform for high-throughput, energy-efficient

machine learning. [225, 100, 177, 259]

55
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These devices also have promising applications in quantum information processing: recent demon-

strations of boson sampling [233], quantum transport dynamics [93], photonic quantum walks [83],

counterfactual communication [8], and probabilistic two-photon gates [42] have all been performed

on this type of programmable photonic hardware. Photonic systems offer a range of unique advan-

tages over other substrates for quantum information processing: optical quantum states have long

coherence times and can be maintained at room temperature, since they interact very weakly with

their environment; photonic qubits are optimal information carriers for distant nodes within quan-

tum networks; and MZIs provide simple, high-fidelity implementations of single-qubit operations

which can be integrated into a photonic chip.

However, photonic quantum computation poses several intrinsic difficulties. The non-interacting

nature of photons makes implementing deterministic multi-photon quantum gates a challenge; many

existing proposals [123] and demonstrations [42] of linear optical quantum computing rely on non-

deterministic “heralded” gates, or encode multi-qubit quantum states in exponentially many spatial

modes [212]. Since photons must propagate at the speed of light, photonic quantum processing

must be done along the path of the photon by sequential optical components, making complex

quantum circuits prohibitively large to implement with free-space optics. These systems and even

some integrated photonic circuits also often suffer from a lack of reconfigurability, as the design of

task-specific optical circuity must be modified to perform different computations. [239]

Here we describe a photonic lattice architecture for a reconfigurable and universal quantum

programmable gate array (QPGA) which can implement any quantum operation, in principle deter-

ministically and with perfect fidelity in the case of ideal physical components. Our design is similar to

a universal linear optical component [157], but employs nonlinear interactions from precisely placed

quantum emitters to enable an N -qubit state to be encoded using O(N) number of spatial modes.

The proposed device can be programmed to implement any quantum circuit decomposed into one-

and two-qubit gates performed by physical lattice components on an integrated photonic circuit.

Phase-modulated MZIs apply arbitrary single-qubit operations to qubits which are path-encoded by

single photons in a superposition of pairs of waveguides and two-photon scattering processes induced

by strongly-coupled quantum emitters implement controlled gates between adjacent qubits.

We provide exact algorithms in Section 4.3 for obtaining the appropriate phase shifter param-

eters to prepare arbitrary quantum states and operators on-chip. In Section 4.4, we discuss how

optimization techniques from machine learning can be used to automatically discover high-fidelity

approximations to desired quantum operations which are significantly more compact than their

explicitly-decomposed exact representations.
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Figure 4.1: The architecture for the quantum programmable gate array shown at various levels of
detail. (a) Physical layout of a four-qubit QPGA with a depth of four layers. Each logical qubit
is path-encoded by a single photon in a pair of waveguides, with the parity of which waveguide
represents |0⟩ and |1⟩ depending on the parity of the qubit index. (b) A quantum circuit diagram
depicting the logical representation of the operator performed by the QPGA in the first panel. The
“switch” symbols between two-qubit operations indicate that the connectivity of the gates can be
reconfigured without changing the physical chip architecture. Solid control dots indicate cσz, while
open dots indicate cσz. (c) A single unit cell within the lattice. The ζ, ξ, θ, ϕ phase shifters are
continuously variable trainable parameters, while η = 0, π2 determines the connectivity of the cσz
gates between neighboring qubits. The pink dots represent quantum emitters embedded a distance
a between two dichroic reflectors, depicted as blue and red rectangles, which selectively reflect light
at frequencies ω and ω′, respectively. The delay lines are matched in length to ω′ and terminate in
reflectors. (d) Four-level energy structure of the quantum emitters embedded in the waveguides.

4.2 Photonic quantum programmable gate arrays

The concept for a photonic quantum programmable gate array is shown in Fig. 4.1a, and the

equivalent logical quantum circuit is depicted in Fig. 4.1b. The architecture consists of a set of

waveguide pairs which each contain single photon pulses. A lattice of phase-modulated MZIs perform

single-qubit rotations, and circulators, MZIs, and embedded four-level systems (4LS) collectively

implement two-qubit controlled-σz (cσz) gates between adjacent qubits. By choosing suitable phase

shifter parameters, arbitrary multi-qubit quantum states and operators can be implemented from

single-qubit and cσz primitives within the lattice, as discussed in Section 4.3. In the following

subsections, we discuss the mechanisms of each component of the architecture in greater detail.
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4.2.1 Single-qubit operations

Qubits are implemented as temporally separated single photons, each injected into a pair of waveg-

uides at a frequency ω and with a long pulse length τ ≫ ω−1. All physical gates within the device

conserve photon occupancy within waveguide pairs. A chip designed to process N -qubit states has

2N number of waveguides, and the computational basis {|0⟩ , |1⟩} of each qubit is represented by

the photon occupancy of the top and bottom waveguide in each pair, with parity alternating with

qubit index as shown in Fig. 4.1a.

Single-qubit gates are implemented with a standard approach using phase-modulated MZIs. An

MZI with four phase shifters in the configuration shown in the upper half of Fig. 4.1c can apply

any operation U ∈ U(2) to its inputs, which suffices to implement arbitrary single-qubit gates.

[123, 42, 202] Assuming the photons are spectrally narrow about ω (see Appendix B.1 for a more

complete treatment of arbitrary photon spectra), the transformation implemented by the MZI on

the input modes takes the form:

U(ζ, ξ, θ, ϕ) = RζξHR
θ
0HR

ϕ
0

=
1

2

(
eiζ 0
0 eiξ

)(
1 1
1 −1

)(
eiθ 0
0 1

)(
1 1
1 −1

)(
eiϕ 0
0 1

)

=
1

2

[
ei(ζ+ϕ)

(
eiθ + 1

)
ei(ξ+ϕ)

(
eiθ − 1

)

eiζ
(
eiθ − 1

)
eiξ
(
eiθ + 1

)
]
,

(4.1)

whereH is the Hadamard operator1 and Rϕ1

ϕ2
denotes a phase shift of ϕ1 applied to the top waveguide

and ϕ2 to the bottom. Here, and for the rest of this paper, successive matrices are left-multiplied

to be consistent with circuit diagrams.

4.2.2 Two-photon gates

In addition to arbitrary single-qubit gates, the QPGA needs to be able to implement two-qubit

entangling operations in order to be a universal quantum device. This is accomplished by nonlinear

interactions between two photons scattering off of a pair of quantum emitters embedded within

the waveguides. The emitters could be implemented by quantum dots coupled to photonic crystal

waveguides [115, 132, 231] or plasmonic nanowires [7], diamond vacancy centers [199, 271, 15], or

many other experimental setups. There have been many proposals for implementing two-qubit

gates using scattering-based processes [59, 222, 49, 252, 54]; the scattering dynamics discussed in

this section are adapted from the scheme described by Zheng et al. [274], with the notable difference

that spatial modes rather than momentum states form the computational basis for the physical

qubits. In this section we show that this scattering process implements a cσz operation up to local

1Whether to use H = 1√
2

[
1 1
1 −1

]
or B = 1√

2

[
1 i
i 1

]
to represent the beamsplitter operation is somewhat a matter of

convention, with classical optics tending to prefer the latter and quantum information often using the former. They
are equivalent up to a phase shift of ζ, θ by π/2.
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phase shifts.2

Consider an arbitrary two-qubit logical input state |Ψ⟩ = α |11⟩ + β |10⟩ + γ |01⟩ + δ |00⟩. The

state consists of two photons superpositioned over two pairs of waveguides shown in Figure 4.1.

Define bosonic operators â
[q]†

0,d , â
[q]†

1,d which create a photon for qubit q with direction d ∈ {L,R} in
the |0⟩ and |1⟩ waveguide, respectively. The corresponding two-photon physical input state |ψ⟩ just
before (1a, 1b) is:

|ψ⟩ = αâ
[1]†

1,Râ
[2]†

1,R |∅⟩+ βâ
[1]†

1,Râ
[2]†

0,R |∅⟩+ γâ
[1]†

0,Râ
[2]†

1,R |∅⟩+ δâ
[1]†

0,Râ
[2]†

0,R |∅⟩ , (4.2)

where |∅⟩ denotes the vacuum state (not to be confused with the computational |0⟩ state).
Consider the lower half of Figure 4.1c. Two circulators at (1a, 1b) direct the |1⟩modal component

of each photon into the waveguides at (2a, 2b). The photons pass through an MZI at (3) which has

a transfer matrix3:

T (η) = R
π/2
0 HRη0HR

π/2
0 =

1

2

(
−eiη − 1 ieiη − i
ieiη − i eiη + 1

)
(4.3)

Define bosonic operators b̂top
†

d , b̂bot
†

d , which create a photon with frequency ω in direction d at

(4a, 4b), respectively.4 The transfer matrix acts only on the |1⟩ component of each photon, so we

can relate the operators:

(
â
[1]†

1,R

â
[2]†

1,R

)
= T (η)

(
b̂top

†

R

b̂bot
†

R

)
,

(
â
[1]†

1,L

â
[2]†

1,L

)
= T ⊺(η)

(
b̂top

†

L

b̂bot
†

L

)
, (4.4)

while â
[q]†

0,d are unaffected. Using the relations described in Eq. 4.4, the input state after propagating

through the MZI at (4a, 4b) is:

|ψ⟩ = eiη
α

2
sin η

(
(b̂top

†

R )2 − (b̂bot
†

R )2
)
|∅⟩

− eiηα cos η b̂top
†

R b̂bot
†

R |∅⟩

− eiη/2
(
β cos

η

2
â
[2]†

0,R + γ sin
η

2
â
[1]†

0,R

)
b̂top

†

R |∅⟩

− eiη/2
(
β sin

η

2
â
[2]†

0,R − γ cos
η

2
â
[1]†

0,R

)
b̂bot

†

R |∅⟩

+ δâ
[1]†

0,Râ
[2]†

0,R |∅⟩ .

(4.5)

2Lattice cells of inverted parity (see Figure 4.1a) actually implement cσz , such that σz is applied only to |00⟩, but
the dynamics are the same, so for brevity we discuss only one parity here.

3The π/2 phase shifts are necessary to conserve photon number within each waveguide pair by making the round-
trip transfer matrix T (η)⊺T (η) diagonal.

4The b̂top
†
, b̂bot

†
notation was chosen to avoid confusion with the qubit indices or basis states â

[q]†

{0,1}.
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The b̂† photons propagate down the waveguides from (4a, 4b) until they interact with the embedded

quantum emitters at (5a, 5b), while we assume the system acts trivially on the â
[q]†

0,R photons.

We now consider the sections between (4a) to (6a) and (4b) to (6b). We will show that the

two-photon state, upon passing through these sections, will gain a π phase shift applied only to the

first term of |ψ⟩ in Eq. 4.5, and thus a cσz operation is implemented on the input state |Ψ⟩. To

show this, we first consider the dynamics of the photons in the section between sites (4a) to (6a)

within a single isolated waveguide; the lower waveguide between (4b) and (6b) behaves identically.

For simplicity, while we consider each waveguide in isolation, we drop the b̂{top,bot} superscripts and

omit the â
[q]†

0,R operators.

The regions of interest are shown in the middle of Fig. 4.1c, which contain quantum emitters

with the four-level energy structures shown in Fig. 4.1d. The energy level of each state |i⟩ is Ωi;

we assume that Ω4 − Ω3 = Ω2 − Ω1 = ω, and denote ω′ ≡ Ω3 − Ω2. The quantum emitters at (5a,

5b) are placed a distance a between a pair of narrow-band filters, which are reflective at frequencies

ω and ω′, respectively, and transparent otherwise. Reflectors terminate the ends of the waveguides

at (6a, 6b); the waveguides between the ω′ filters and the reflectors form a delay line with a length

which is a multiple of 2π
ω′ . The real-space Hamiltonian that describes the coupling of such an atom

to the waveguide without the filters is given by [207, 221, 274]:

H =
ℏ
i

∫
dx

[
vg b̂

†
R(x)

∂

∂x
b̂R(x)− vg b̂†L(x)

∂

∂x
b̂L(x) + vr ĉ

†(x)
∂

∂x
ĉ(x)

]
+ ℏ

4∑

n=1

Ωn|n⟩⟨n|

+ ℏ
∫
dx δ(x)

[(√
Γvg
2
b̂†R(x) +

√
Γvg
2
b̂†L(x) +

√
Γ′vr ĉ

†(x)

)
(|1⟩⟨2|+ |3⟩⟨2|+ |3⟩⟨4|) + H.c.

]
.

(4.6)

Here, the first term describes the free waveguide dynamics, the second term describes the embedded

four-level system shown in Fig. 4.1d, and the third term is the interaction Hamiltonian. The decay

rate into the waveguide is Γ, the coupling Γ′ describes the extrinsic loss of the excited states to

degrees of freedom outside the waveguide, which is modeled as emission into a reservoir by the

ĉ†, ĉ operators, and vg {vr} is the group velocity of the photons in the waveguide {reservoir}. The

transition frequencies ω, ω′ obey |ω − ω′| ≫ Γ.

The scattering dynamics can be summarized by four steps occurring simultaneously in the top

and bottom waveguides. (1) Photon A at frequency ω causes the atom, which is initialized in state

|1⟩, to partially transition from |1⟩ → |3⟩ with an amplitude of |3⟩ corresponding to the photon

occupancy in the waveguide. This emits an auxiliary photon A′ with frequency ω′, which is reflected

by one of the narrow-band mirrors and travels down the delay line. (2) While photon A′ is in the

delay line, photon B, also at frequency ω, is injected into the system. Interaction with the |1⟩
component of the atomic states results in the transition |1⟩ → |3⟩ and releases an auxiliary photon

B′ with frequency ω′ down the delay line, while interaction with the |3⟩ component imparts a π
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phase shift onto B and reflects it back into the waveguide. (3) Photon A′ arrives back at the 4LS

after traversing the delay line. By time reversal arguments, sending the output photon A′ back into

the atom retrieves photon A, which exits the inner cell through its original waveguide. (4) Photon

B′ arrives back at the 4LS, retrieving photon B as in step 3.

A conceptual animation depicting the two-photon scattering process in a QPGA cell can be

found in the supplementary materials. We now discuss each step in greater detail. Derivations of

the reflection coefficients and output states can be found in Appendix B.2.

Step 1. At time t = 1, photon A with frequency ω and state |ψin
1 ⟩ = αA |ω⟩+ βA |∅⟩ is incident

on the 4LS, which is initialized to the state |1⟩. From calculations detailed in Appendix B.2, the

output state is:

|ψout
1 ⟩ = αA (r11 |ω⟩ ⊗ |1⟩+ r13 |ω′⟩ ⊗ |3⟩) + βA |∅⟩ ⊗ |1⟩ , (4.7)

where the amplitudes r11 and r13 are:

r11 = e2iωa
Γ′ − Γ

(
e2iω

′a − e−2iωa
)

−Γ′ + Γ (e2iω′a + e2iωa − 2)
, (4.8)

r13 =
Γ
(
e2iωa − 1

) (
e2iω

′a − 1
)

−Γ′ + Γ (e2iω′a + e2iωa − 2)
. (4.9)

If the boundary condition that

a =
nπ

ω + ω′ for some n ∈ N (4.10)

is satisfied, then in the strong-coupling limit (Γ/Γ′ → ∞), r11 = 0 and r13 = −1, so |ψout
1 ⟩ =

−αA |ω′⟩ ⊗ |3⟩ + βA |∅⟩ ⊗ |1⟩. Thus, the atom transitions from |1⟩ → |3⟩, stores the input photon,

and releases an auxiliary A′ photon at frequency ω′ into the delay line.

Step 2. At time t = 2, photon B with state |ψin
2 ⟩ = αB |ω⟩+βB |∅⟩ is incident on the 4LS. After

scattering, the output state is:

|ψout
2 ⟩ = αBr11αAr11 |ω⟩ ⊗ |ω⟩ ⊗ |1⟩

+ αBr13αAr11 |ω′⟩ ⊗ |ω⟩ ⊗ |3⟩
+ αBR3αAr13 |ω⟩ ⊗ |ω′⟩ ⊗ |3⟩
+ αBr11βA |ω⟩ ⊗ |∅⟩ ⊗ |1⟩
+ αBr13βA |ω′⟩ ⊗ |∅⟩ ⊗ |3⟩
+ βB |∅⟩ ⊗ |ψout

1 ⟩ ,

(4.11)

where the states are ordered as (photon B ⊗ photon A ⊗ atom), and where the reflection amplitude
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of the resonant |3⟩ → |4⟩ → |3⟩ transition is:

R3 =
Γ′e2iωa + Γ

(
1− e2iωa

)

−Γ′ − Γ (1− e2iωa) . (4.12)

As before, if the condition of Eq. 4.10 is satisfied, then R3 = −1 = eiπ, so photon B gains

a π phase. For simplicity, in the rest of this section, we focus on the case where Eq. 4.10 holds.

Substituting the on-resonance coefficients of r11 → 0, r13 → −1, and R3 → −1 the output state at

the end of step 2 is:

|ψout
2 ⟩ = αBαA |ω⟩ ⊗ |ω′⟩ ⊗ |3⟩ − αBβA |ω′⟩ ⊗ |∅⟩ ⊗ |3⟩
− βBαA |∅⟩ ⊗ |ω′⟩ ⊗ |3⟩+ βBβA |∅⟩ ⊗ |∅⟩ ⊗ |1⟩ .

(4.13)

Step 3. At time t = 3, photon A′ has traveled down the delay line, which has a length which

is a multiple of 2π
ω′ , and is returning to the atom. Its frequency ω′ is resonant with the |3⟩ ↔ |2⟩

transition, and the reflection coefficients r33 and r31 have expressions which are identical to Eqs. 4.8

and 4.9, respectively, except with ω, ω′ exchanged, such that when a = nπ
ω+ω′ , we have that r33 = 0

and r31 = −1.
The state of the returning A′ photon is |A′⟩ = −αA |ω′⟩ + βA |∅⟩, and it only interacts with

the |∗⟩ ⊗ |ω′⟩ ⊗ |3⟩ components of the system state, mapping |∗⟩ ⊗ |ω′⟩ ⊗ |3⟩ 7→ −1 · |∗⟩ ⊗ |ω⟩ ⊗ |1⟩.
Therefore, the system state at the end of step 3 is:

|ψout
3 ⟩ =− αBαA |ω⟩ ⊗ |ω⟩ ⊗ |1⟩ − αBβA |ω′⟩ ⊗ |∅⟩ ⊗ |3⟩

+ βBαA |∅⟩ ⊗ |ω⟩ ⊗ |1⟩+ βBβA |∅⟩ ⊗ |∅⟩ ⊗ |1⟩ .
(4.14)

Step 4. At time t = 4, photon B′ is returning to the 4LS from the delay line. The reflection

coefficients are the same as in step 3, and photon only interacts nontrivially with the |ω′⟩⊗ |∗⟩⊗ |3⟩
components of |ψout

3 ⟩, so the final output state is:

|ψout
4 ⟩ =− αBαA |ω⟩ ⊗ |ω⟩ ⊗ |1⟩+ αBβA |ω⟩ ⊗ |∅⟩ ⊗ |1⟩

+ βBαA |∅⟩ ⊗ |ω⟩ ⊗ |1⟩+ βBβA |∅⟩ ⊗ |∅⟩ ⊗ |1⟩ .
(4.15)

At the end of the gate operation, the emitter is restored to its original |1⟩ state and is disentangled

from photons A and B, and the two-photon state acquires a π phase shift only on the component

corresponding to the presence of both A and B. Thus, the gate operation in the computational basis

of spatial modes is:

U =

(
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

)
, (4.16)

which is exactly the quantum controlled-σz gate.

We now return to describing the evolution of the state where we left off at Eq. 4.5. Using the
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|B⟩ ⊗ |A⟩ ⊗ |4LS⟩ ordering from Eqs. 4.11-4.15, we rewrite this equation to describe the states of

the top and bottom photon-photon-4LS systems:

|ψtop⟩ = +eiη
α

2
sin η |ω⟩ ⊗ |ω⟩ ⊗ |1⟩ −

(
eiηα cos η + eiη/2β cos

η

2

)
|ω⟩ ⊗ |∅⟩ ⊗ |1⟩

− eiη/2γ sin η
2
|∅⟩ ⊗ |ω⟩ ⊗ |1⟩+ δ |∅⟩ ⊗ |∅⟩ ⊗ |1⟩ , (4.17)

|ψbot⟩ = −eiη α
2
sin η |ω⟩ ⊗ |ω⟩ ⊗ |1⟩ − eiη/2β cos η

2
|ω⟩ ⊗ |∅⟩ ⊗ |1⟩

−
(
eiηα cos η + eiη/2γ cos

η

2

)
|∅⟩ ⊗ |ω⟩ ⊗ |1⟩+ δ |∅⟩ ⊗ |∅⟩ ⊗ |1⟩ . (4.18)

The photons scatter off of the quantum emitters, producing ancillary photons which travel down

the delay lines and back and release the original photons, but with a π phase shift applied to the

|ω⟩⊗ |ω⟩⊗ |1⟩ component of the state where both photons are present. Thus, the first term changes

sign for each of Eqs. 4.17 and 4.18, and the output state when the photons finally return to the MZI

in Figure 4.1c, at (4a, 4b) is:

|ψ⟩ = eiη
α

2
sin η

(
−(b̂top

†

L )2 + (b̂bot
†

L )2
)
|∅⟩

− eiηα cos η b̂top
†

L b̂bot
†

L |∅⟩

− eiη/2
(
β cos

η

2
â
[2]†

0,L + γ sin
η

2
â
[1]†

0,L

)
b̂top

†

L |∅⟩

− eiη/2
(
β sin

η

2
â
[2]†

0,L − γ cos
η

2
â
[1]†

0,L

)
b̂bot

†

L |∅⟩

+ δâ
[1]†

0,Râ
[2]†

0,R |∅⟩ ,

(4.19)

where we assume that the photons described by the â
[q]†

0,R operators in Eq. 4.5 have been reflected

and now travel in the L direction.

Propagating this state through the MZI at (3) one last time using |ψout⟩ = T ⊺(η) |ψ⟩, we obtain

the final output state at (2a, 2b):

|ψout⟩ = e2iηα cos(2η)â
[1]†

1,L â
[2]†

1,L |∅⟩

− e2iη α
2
sin(2η)

(
(â

[1]†

1,L)
2 − (â

[2]†

1,L)
2
)
|∅⟩

+ eiηβâ
[1]†

1,L â
[2]†

0,L |∅⟩

+ eiηγâ
[1]†

0,L â
[2]†

1,L |∅⟩

+ δâ
[1]†

0,L â
[2]†

0,L |∅⟩ .

(4.20)

The output photons propagate to the circulators at (1a, 1b) and are reinjected back into their
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original waveguides. In order to preserve photon numbers between waveguide pairs, the second term

in Eq. 4.20 must be zero, since (â
[1]†

1,L)
2 and (â

[2]†

1,L)
2 correspond to injection of two photons into the

same waveguide. This fact constrains η to phase shifts which are multiples of π2 .

We note the gate action of the entire system at η = 0 is identity and the action at η = π
2 is

the cσz operation, up to a phase shift of π
2 which can be included in the ζ, ξ phase shifters at the

subsequent column in the lattice:

U(η = 0) =

(
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

)
= 1 (4.21)

U(η =
π

2
) =

(
1 0 0 0
0 i 0 0
0 0 i 0
0 0 0 1

)
=
(
R
π/2
0 ⊗R0

π/2

)
cσz. (4.22)

To summarize the results of this section, the photons are directed by circulators through an MZI

and toward the scattering sites. Depending on the value of η, the four-level systems either interact

with one (η = 0) or two (η = π
2 ) photons, and they impart a π phase shift onto the two-photon

component of the state they receive. The photons retrace their path and return to their original

waveguides to be operated on by the next column of gates in the lattice.

4.2.3 Fidelity and fault tolerance

The calculations in the previous sections have shown that in an ideal case, our photonic architec-

ture can perfectly implement arbitrary single-qubit operators and cσz. However, this makes some

assumptions about the construction of the device. Namely, we assume that waveguides are lossless,

that photons are injected with frequency ω and vanishing spectral width δω → 0, and that the

excited states of the scattering systems are lossless with Γ′ → 0, such that the Purcell enhancement

factors are large, with P = Γ/Γ′ →∞.

In reality, photons would have finite spectral width and the local emitters would have finite

Purcell factors, meaning the QPGA would implement logical operators with fidelity below unity. As

photons propagate through the imperfect gates implemented by the physical circuit, the errors will in

general accumulate to render very deep circuits useless. However, this can be addressed by a variety

of error-correcting methods. The errors which could occur in a physical implementation of this circuit

can broadly be classified into three types: spectral unitary errors from the MZIs, depolarizing errors

from the scattering sites, and photon loss from the quantum emitters and waveguides.

MZIs acting on photons with finite spectral width (and dispersive effects in the waveguides) can

reshape the photon pulse and transmit a portion of the pulse to the top and bottom waveguides

which differs from the target amount. The photon is not lost to or entangled with the environment,

so this error can be represented by a unitary operation Ũ with a characteristic error ϵ which acts

as Ũ |ψin⟩ =
√
1− ϵ |ψtarg⟩ + ϵ |ψtarg

⊥ ⟩, where |ψtarg
⊥ ⟩ is some state orthogonal to the desired output

state |ψtarg⟩. [124] This error can, in principle, be trained around using the gradient-based circuit
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optimization approach discussed in Section 4.4. However, as shown in Appendix B.1, the fidelity

of the MZIs can be quite high even for short pulses (a 1ns pulse has infidelity of 10−10), so the

dominant source of error would come from the scattering operations.

The infidelity in the two-photon gates F−1 = 1 − | ⟨ψA, ψB , ψ4LS| cσABz ⊗ 14LS |ψA, ψB , 1⟩ |2
introduced by finite excitation loss and spectral width results in a photon-photon-emitter state

which is not fully entangled during operation nor fully disentangled at the end of the operation. If

we trace out the degrees of freedom of the four-level system, we obtain a mixed two-photon output

state which is the desired output state, but with a probability p = F−1 of applying a second σz

operation which undoes the original gate action. This corresponds to the well-studied quantum

depolarizing error model [121, 81, 168], which describes quantum gates as being faulty by randomly

applying Pauli operators with some effective error probability per gate (EPG). [119, 168] Fault

tolerance5 requires an EPG below a certain threshold pth, usually estimated as pth ≈ 10−4 [80, 194],

but for some architectures and scenarios as high as pth ≈ 10−2 [119]. In this system, the EPG

approaches zero as the Purcell factor tends to infinity, with P = 40 yielding a 6% infidelity. [274]

Photon leakage from the waveguide or from spontaneous emission from the scattering sites repre-

sents the dominating error mechanism in this design and can be completely and efficiently corrected

using concatenated coding [120, 59] or by using one of the Bose-Chaudhuri-Hocquenghem family of

codes [84] to correct for erasure errors [122]. Such codes allow for loss thresholds per gate above

1.7% [230] and possibly as high as 5% [122], corresponding to Purcell factors of P ≈ 100 to P ≈ 30.

[274]

Relatively small QPGAs which do not employ error correction may already be feasible to imple-

ment. If one assumes current realistic values for silicon waveguide loss of 0.3 dB/cm [58], quantum

emitters with a Purcell factor of P = 80 [35], and a unit cell path length of 500 µm, then photon

loss is about 4% per unit cell. Thus, the total loss could be kept below 50% for a circuit as large

as 16 layers, which is sufficient to perform high-fidelity approximate quantum Fourier transforms

on four qubits. (see Figure 4.7). This estimate ignores the optical circulators, the details of which

are not critical to the design, and which currently have comparatively high losses of around 3-6

dB [272, 139], which would bring the loss per unit cell to about 50%. With some modification to

the QPGA design, one can conceive a similar device which performs the same function but does

not require optical circulators, e.g. by using a single unit cell to emulate a large gate array while

storing many photon pulses in a large ring. However, with rapid experimental in waveguide-cavity

systems and nonreciprocal on-chip devices, larger-scale QPGAs may be feasible to implement in the

foreseeable future.

5It should be noted that while cσz and Clifford gates have fault tolerant constructions, it has been shown that
no single error correcting code has transversal implementations for all gates required for universal and classically
non-simulable circuits [68], necessitating additional constructions if other gates are to be included. [39]
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4.3 Exact quantum state and operator preparation

Having established how the design presented in Section 4.2 acts on physical photonic qubits, we

now discuss how the idealized logical model of the device can be programmed to prepare quantum

states and to implement quantum operators. We assume no error in the device here and describe

algorithms to implement the desired actions with perfect fidelity, albeit sometimes using circuits

of great depth. In reality, finite device errors may make the more compact approximate circuit

decompositions discussed in Section 4.4 more relevant than the exact decompositions presented in

this section.

4.3.1 Universality of the design

The MZIs in the lattice can implement any single-qubit gate by parameterizing it through the ζ, ξ, θ, ϕ

phase shifts. The nonlinear interactions between waveguide pairs implements cσz, which can be used

in conjunction with H to implement a controlled-NOT (cσx) gate6 as cσx = (1 ⊗ H)cσz(1 ⊗ H).

[168] Since the set of single-qubit operations and cσx gate comprises a universal gate set [18], the

device is universal, such that a sufficient number of layers can be used to implement an arbitrary

multi-qubit gate.

Phase shifter parameters which implement various common single- and two-qubit quantum gates

are detailed in Appendix B.3. Notably, two-qubit gates can have differing cσz parities, meaning

that some require an even or odd number of successive cσz gates to implement. This would be

problematic in an architecture with fixed cσz connectivity, as aligning circuit elements within a

fixed lattice would be impossible; this necessitates a mechanism such as the η-shifted MZI described

by Eq. 4.3 which can toggle the gate action between qubits.

4.3.2 State preparation

Arbitrary quantum states can be prepared on a lattice with nearest-neighbor connectivity using

a circuit based on Ref. [112] consisting of a sequence of multi-controlled single-qubit rotations.

Although the general worst-case complexity of this algorithm is O(n22n), an important class of

quantum states, including Dicke states [23] and general symmetric states [112], can be efficiently

prepared using such a lattice with a depth which is polynomial in the number of qubits.

Suppose we have a state |ψ⟩ =∑q∈{0,1}n αq |q⟩ with αq ∈ C which we would like to prepare. Let

ξx for x ∈ {0, 1}k and 1 ≤ k ≤ n denote the projection of |ψ⟩ onto the computational basis vector

|x⟩, tracing over all qubits subsequent to k:

ξx =
∑

x′∈{0,1}n−k

⟨x, x′|ψ⟩ . (4.23)

6Due to the nearest-neighbor connectivity of the architecture, cσx between non-adjacent qubits must be imple-
mented with a sequence of SWAP gates, which can in turn be implemented using three cσx gates. [168]
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For each string x of length k, define a k-ly controlled single-qubit rotation operator Ux1···xk
acting

on qubit k + 1 which maps:

Ux1···xk
|x1 · · ·xk⟩ |0⟩ =

ξx1···xk0

ξx1···xk

|x1 · · ·xk⟩ |0⟩

+
ξx1···xk1

ξx1···xk

|x1 · · ·xk⟩ |1⟩ .
(4.24)

Each k-controlled operation can be implemented on the nearest-neighbor architecture of the lattice

with O(k2) depth in the lattice using the implementation depicted in Figure 4.10 of Ref. [168].

The brute-force algorithm for preparing |ψ⟩ is the application of 2n of these operations, as shown

in the circuit diagram of Figure 4.2.

|0⟩ U • • • · · · • •

|0⟩ U0 U1 • • · · · • •

|0⟩ U00 U01 U10 U11 · · · • •
.
.
.

.

.

.

|0⟩ · · · •

|0⟩ · · · U11···0 U11···1

Figure 4.2: Brute-force state preparation algorithm to map |0⟩⊗n 7→ |ψ⟩ using up to 2n controlled
rotations.

It can be shown by induction that after the first k rotations, the resulting state takes the form
∑
x1···xk∈{0,1}k ξx1···xk

|x1 · · ·xk⟩, so after all 2n operations, the output state is:

∑

x1···xn∈{0,1}n

ξx1···xn
|x1 · · ·xn⟩ =

∑

q∈{0,1}n

αq |q⟩ = |ψ⟩ . (4.25)

Although this algorithm is not efficient for arbitrary quantum states, it is capable of efficiently

preparing many interesting and important states. For example, an n-qubit GHZ state can be pre-

pared on a nearest-neighbor lattice using n layers by setting U = H, applying singly-controlled cσx

between successive qubits, and discarding all other Ux1x2···xk
operators.

4.3.3 Implementation of general quantum operators

Arbitrary U(2n) operations can be exactly implemented on the lattice using a nullification algorithm

similar to the decomposition routines for classical optical meshes presented in Refs. [202, 50]. A

more in-depth treatment of this problem can be found in Ref. [165].

In linear algebra, QR factorization decomposes any unitary matrix as U = QR, where R is

diagonal and unitary and Q is a product of two-level Givens rotations [78, 165], which are operations
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acting trivially on all but two basis vectors |m⟩ , |n⟩:

Gm,n(θ, ϕ) = eiϕ cos θ|m⟩⟨m| − sin θ|m⟩⟨n|
+ eiϕ sin θ|n⟩⟨m| + cos θ|n⟩⟨n|.

(4.26)

For any unitary matrix U , there exist values of θ, ϕ which “nullifies” a target element in row m

or n of U . [50] Let Gjm,n denote the Givens rotation to nullify the element of U in row m, column

j against the element in row n, column j. It can be shown [165] that after applying O(4n) Givens

rotations, we obtain an identity matrix:



2n−1∏

j=1

2n∏

m=j+1

G2n−j
m,m−1


U = 1. (4.27)

The operations G2n−j
m,m−1 do not correspond to any standard quantum gates, but if the basis

vectors are permuted to be ordered in the reflected binary code [255], then the Givens rotations

between adjacent vectors |m⟩ , |m− 1⟩ can be written as a product of (n − 1)-ly controlled single-

qubit rotations [248], each of which can be performed with a lattice depth of O(n2). Thus, the target
operator U can be implemented as:

U =

2n−1∏

j=1

2n−j∏

m=j

G
γ(j)†

γ(2n−m+1),γ(2n−m), (4.28)

where γ(j) denotes the index j in reflected binary ordering. The permutation for each of the O(4n)
Givens rotations requires O(n3) cσx gates, so the worst-case complexity is O(n34n).

As with state preparation, although implementing the most general quantum operators is hard,

many important quantum operators, such as the quantum Fourier transform, may be efficiently

implemented using a lattice of polynomial depth.

4.4 Gradient-based circuit optimization

In the previous section we discussed preparation of arbitrary quantum states or operators by obtain-

ing appropriate phase shifter values to implement an exact decomposition of the desired operation

using only single-qubit and nearest-neighbor cσz gates. In this section, we demonstrate a method,

building on our previous work for classical MZI networks [177, 259] and on work for continuous-

variable quantum neural networks [10], of automatically discovering high-fidelity approximate de-

compositions of a target operator using a gradient-based optimization approach. As shown in Section

4.4.4, these “learned” implementations of quantum operators are often far more compact than an

explicit decomposition, allowing for lattices with a fraction of the physical depth.
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|q1⟩ • U11 U12 • U13 U14 • U15 U16

|q2⟩ • U21 • U22 • U23 • U24 • U25 • U26

|q3⟩ • U31 • U32 • U33 • U34 • U35 • U36

|q4⟩ • U41 • U42 • U43 • U44 • U45 • U46

|q5⟩ U51 • U52 U53 • U54 U55 • U56

Figure 4.3: Fixed connectivity scheme employed in training. The cσz operators in odd columns
are implicitly constructed by embedding σx operations before and after physical cσz gates.

Let Uil = U(ζil, ξil, θil, ϕil) denote the operation described by Eq. 4.1 acting on qubit i performed

by a single MZI in layer l of the lattice. Each layer of the lattice refers to the column of MZIs

implementing Uil and a subsequent column of cσi,jz gates between qubits i and j.

Because the strength of the cσz interaction is not a continuous variational parameter (since the

only valid settings are η = 0 (off) or η = π
2 (on), as discussed in Section 4.2.2), in our numerical

experiments, we employ a checkerboard-style connectivity where half of the cσz gates are discon-

nected, as shown in Figure 4.3. In a given layer, the cσz gates are applied to each pair of adjacent

qubits with an offset determined by the parity of the layer index. Additionally, we implicitly embed

logical σx gates in the single-qubit operators preceding and following two-qubit gates in odd layers,

such that Ui,n 7→ Ui,nσx and Ui,n+1 7→ σxUi,n+1 for odd n; this transforms the cσz gates applied in

odd layers into cσz gates without adding to the depth of the lattice.

The operation performed on an N -qubit quantum state by a lattice of depth L with this connec-

tivity scheme is given by:

UΘ⃗ =

L∏

l=1


 ⊗

i∈C(l)
cσi,i+1
z ·

N⊗

i=1

U(ζil, ξil, θil, ϕil)


 , (4.29)

where Θ⃗ denotes all free parameters {ζil, ξil, θil, ϕil} in the lattice, where the set of cσz connec-

tions is C(l) = {1, 3, 5, · · · , 2⌈N2 ⌉ − 1} [C(l) = {2, 4, 6, · · · , 2⌊N2 ⌋}] for odd [even] l, and where left-

multiplication and padding with identity are implicit.

Let F(ψ̃, ψ) = |⟨ψ̃|ψ⟩|2 denote the fidelity between states |ψ̃⟩ and |ψ⟩. To implement a target

operator Û , the optimization routine finds a set of parameters Θ⃗ which maximizes the average

fidelity F = | ⟨ψin| U†
Θ⃗
Û |ψin⟩ |2 over a “training set” of input states {ψin}. The algorithm computes

the gradient ∇Θ⃗F of the fidelity over the training states with respect to the phase shift parameters

and iteratively updates Θ⃗ by a step size η as Θ⃗ 7→ Θ⃗ + η∇Θ⃗F over the course of the training. In

the case of operator implementation, {ψin} are an ensemble of uniformly randomly sampled state

vectors, while for state preparation, {ψin} = {|0⟩⊗N}.
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In the following subsections we present a series of numerical experiments in which a simulated

logical model of a QPGA is trained to implement a variety of quantum states and operators. The

numerical model was programmed using a custom backend built with TensorFlow [2], and the source

code for all experiments in this paper is available at github.com/fancompute/qpga.

For operator preparation simulations, we generate the training set {ψin} of random n-qubit state

vectors by randomly choosing 2n component magnitudes uniformly between [0, 1), then renormalizing

the state vector and assigning each component a random phase between [0, 2π). The number of

training samples is empirically chosen, but always greatly exceeds 2n. The corresponding target

output states are produced by running the input states through an explicitly constructed quantum

circuit simulated using the SQUANCH Python framework [19]. For state preparation simulations, the

training set is simply the zero state input |0⟩⊗N and the corresponding single output state is directly

compared against the target state.

For all simulations, we used the checkerboard connectivity scheme described in the previous

section. We initialized all ζ, ξ, θ, ϕ phase shifters uniformly from [0, 2π), optimized the gate array

using the Adam optimizer [117] with learning rate annealing, and performed the training on an

NVIDIA Tesla K80 GPU.

4.4.1 GHZ state preparation

Greenberger–Horne–Zeilinger (GHZ) states [85] are maximally-entangled multi-qubit states of the

form 1√
2
(|00 · · · 0⟩+|11 · · · 1⟩) and have important applications in quantum information and quantum

cryptography. [97]

Figure 4.4 shows the optimization progress of a four-qubit GHZ state. We simulated a small

four-qubit QPGA with a fixed depth of 20 layers. (As noted in Section 4.3.2, a 4-qubit GHZ state

can be exactly implemented using only 4 circuit layers, but we use the same simulated 20-layer

device with the checkerboard cσz connectivity for all simulations in this section.) For visualization

purposes, we used a low learning rate and only displayed the first 100 iterations of training. Using

a deeper lattice with longer training, arbitrarily high fidelities can be reached.

The stochastic nature of the initialization and optimization routines means that the training con-

verges non-deterministically. Shallower circuits have fewer variational parameters to optimize and

fewer layers to allow entanglement to propagate between nearest-neighbor qubits, which can result

in a final fidelity which is far from unity. Deeper circuits have more parameters to optimize but re-

quire greater computational resources to simulate (and experimentally would have more pronounced

physical errors if this were being considered). The number of layers in the circuit was empirically

chosen to be a small depth which would consistently reach F ≈ 1.

Due to the uniform initialization of the phase shifters in the lattice, the model initially outputs a

random, non-maximally entangled quantum state lacking any apparent structure. As the optimiza-

tion routine proceeds, the lattice produces states which have increasingly large |0000⟩ and |1111⟩

https://github.com/fancompute/qpga
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Figure 4.4: Optimization of a quantum circuit to prepare a four-qubit GHZ state. (Top) Evolution
of the output state |ψ̃⟩ over the course of training. The vertical axis represents the magnitude of the
projection ⟨ψ̃|bj⟩ of the output state onto each computational basis state |bj⟩. (Bottom) Fidelity
between the output state and target state over the course of training, reaching a maximum value of
F ≈ 99.94%. The shared horizontal axis indicates iterations during training.

components, with the relative phase between these components approaching 0, while the other com-

ponents of the output state have vanishing amplitudes. After 100 iterations, the model generates a

state matching the target state with 99.94% fidelity.

4.4.2 Random state preparation

As discussed in Section 4.3.2, states with certain structures and symmetries are easier to prepare than

general quantum states. To demonstrate the generality of the gradient-based circuit optimization

routine, we use it to prepare a sample of random quantum states.7 The states are generated by

choosing 2n component magnitudes and phases uniformly, as described at the beginning of Section

4.4. We choose n = 4 qubits and fix a depth of 20 layers; the fidelities between the output states

and target states over the course of training is shown in Figure 4.5. The results show that a QPGA

of this depth is sufficient to create an arbitrary 4-qubit state with high fidelity.

7While the gradient-based circuit decomposition method will not bypass the exponential complexity of approxi-
mating general quantum states and operators (see Ref. [168], section 4.5.4), it is still informative to show that the
method can implement states without specific structure.
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Figure 4.5: Training a 20-layer QPGA to prepare an ensemble of randomly sampled four-qubit
states. Fidelities between the output and target states are shown over the course of each optimization.
The average fidelity at the end of training is F = 99.2%.

4.4.3 Quantum Fourier transform

The quantum Fourier transform is an important operator which plays a key role in many quantum

computing algorithms, especially the eigenvalue estimation routine. [168] The quantum Fourier

transform operating on n qubits takes the form:

UQFT =
1

n

n−1∑

j=0

n−1∑

k=0

e2πijk/n|j⟩⟨k|. (4.30)

For this simulation, we compare the trainable circuit against the exact circuit implementation of

the QFT, which has a complexity of O(n2) (although the QFT can be approximated to within an

inverse polynomial in n using only O(n log n) gates [90]).
Figure 4.6 shows the optimization of a QPGA to implement a quantum Fourier transform on

four input qubits. The explicit decomposition of the QFT circuit requires 57 layers8, but a trained

QGPA with only 20 layers achieves a near-unity fidelity of F = 99.94%.

4.4.4 Circuit compactness analysis

In the previous sections, we have shown that gradient-based circuit optimization can produce high-

fidelity operators which are significantly more compact than their explicitly-decomposed counter-

parts and are implementable on QPGAs with significantly fewer layers. To better characterize this,

we performed a search over qubit number and circuit depth to find trained circuits which match the

8We train against the explicit circuit provided in Ref. [168], Fig. 5.1, but additionally add ⌊n
2
⌋ SWAP gates, since

the output qubits in the Fourier basis are otherwise in reverse order.
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Figure 4.6: Optimization of a 20-layer QPGA to prepare a quantum Fourier transform on the
four input qubits. (Top) The operators Ũi implemented by the QPGA after i training epochs.
Each square array represents the magnitude (relative to the maximum element) and phase of the
projection of the operator onto the lexicographically-ordered computational basis states, encoded
in the respective size and hue of the squares. The final Ũ50 is visually indistinguishable from Û .
(Bottom) Fidelity between the implemented and target operator over the course of training. The final
fidelity is F = 99.94%. An animated version of this figure showing the training of the implemented
operator can be found in the supplementary materials.

target operator to within some specified fidelity threshold. We used the quantum Fourier transform

as the target operator for this benchmark due to its prevalence and complexity. The results are

plotted in Figure 4.7.

To perform the compactness analysis, we iteratively trained QPGAs of increasing depth to imple-

ment an n-qubit QFT to a desired fidelity threshold, chosen to be F > 99.9%. Multiple optimization

routines were run at each depth since training does not converge deterministically due to random

initialization and the potential for getting stuck in a local maxima, which is more pronounced at

larger qubit numbers.9 We note that the final gradient-based QFT implementations typically require

only 1/4 to 1/3 as many layers as their explicitly decomposed counterparts.

9For circuits with many qubits, more sophisticated initialization routines which take the locally-connected structure
of the architecture into account such as Haar initialization [177] may be necessary to ensure a reasonable chance of
convergence.
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Figure 4.7: Required circuit depths to implement a quantum Fourier transform for a range of qubit
numbers using explicit decomposition (top solid line, blue) and using gradient-based decomposition
(bottom solid line, orange) which achieves a fidelity above 99.9%. Relative compactness of explicit vs.
gradient-based decompositions is depicted by the red dotted line. The approximate decompositions
are significantly more compact than the explicitly constructed circuits.

4.5 Conclusion

In this paper we have presented a photonic architecture for a quantum programmable gate array

capable of implementing arbitrary quantum states, operators, and computations. The architecture,

presented in Section 4.2, extends universal programmable optics to the quantum domain by em-

ploying two-photon interactions from quantum emitters embedded in the waveguides. This allows

for deterministic multi-qubit gates which use a number of waveguides that is linear in the number

of qubits. The design parameterizes arbitrary quantum circuits as a lattice of single-qubit gates

implemented by phase-modulated Mach-Zehnder interferometers and two-qubit cσz gates with vari-

able connectivity implemented by a scattering process described in Section 4.2.2. By setting phase

shifter parameters to implement appropriate single-qubit operations and to enable two-photon in-

teractions where needed, the lattice can be dynamically programmed to implement any quantum

circuit without hardware modifications.

In Section 4.3, we showed that the logical system implemented by the QPGA is computationally

universal: any quantum operation can be mapped onto a corresponding set of phase shifter param-

eters given a sufficiently large lattice. We described an explicit algorithm for preparing arbitrary

quantum states on the lattice which are efficient for some subclasses of quantum states, and we

discussed how QR decomposition can map U(2n) unitaries onto a series of controlled rotations in

the lattice.

In Section 4.4, we showed how gradient-based optimization techniques prevalent in machine

learning can be used to automatically implement high-fidelity approximations to desired quantum
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operations. We trained simulated QPGAs with fixed cσz connectivity to prepare a variety of impor-

tant quantum states and operators, and we showed that these approximate circuit implementations

are often significantly more compact than their explicitly-decomposed counterparts.

While this work is purely theoretical, there has been tremendous recent experimental progress

in both of the key technologies required to realize this device: programmable photonic processors

[225, 92, 93, 91, 48, 208, 276, 186, 185] and strongly coupled quantum emitters [271, 199, 132, 115,

231, 15, 7, 35]. The ongoing advancements in these technologies may allow for feasible near-future

implementation of the device described in this paper.



Chapter 5

Photonic quantum computing

In this chapter we present an architecture for a photonic quantum computer which can perform any

computation using only a single coherently controlled atomic qubit [20]. Photonics offers unique

advantages as a substrate for quantum information processing, but imposes fundamental scalabil-

ity challenges. Nondeterministic schemes impose massive resource overheads, while deterministic

schemes require prohibitively many identical quantum emitters to realize sizeable quantum circuits.

Here we propose a scalable architecture for a photonic quantum computer which needs minimal

quantum resources to implement any quantum circuit: a single coherently controlled atom. Optical

switches endow a photonic quantum state with a synthetic time dimension by modulating photon-

atom couplings. Quantum operations applied to the atomic qubit can be teleported onto the photonic

qubits via projective measurement, and arbitrary quantum circuits can be compiled into a sequence

of these teleported operators. This design negates the need for many identical quantum emitters

to be integrated into a photonic circuit and allows effective all-to-all connectivity between photonic

qubits. The proposed device has a machine size which is independent of quantum circuit depth,

does not require single-photon detectors, operates deterministically, and is robust to experimental

imperfections.

5.1 Introduction

Photonics offers many advantages for quantum information processing [253, 172, 275]: optical qubits

have very long coherence times, are maintainable at room temperature, and are optimal for quantum

communication. The main difficulty faced by all quantum computing (QC) architectures is scalabil-

ity, but this is especially true for photonic systems. Optical qubits must propagate, so processing

must be done mid-flight by passing the photons through sequential optical components. Since pho-

tonic quantum gates are physical objects (as opposed to, e.g. sequential laser pulses for atomic

qubits), machine size scales with circuit depth, making complex quantum circuits prohibitively large

76



CHAPTER 5. PHOTONIC QUANTUM COMPUTING 77

photon
source

coherent 
control
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Figure 5.1: The photonic quantum computer architecture described in this work. (a) The physical
design of the device. Photonic qubits counter-propagate through a fiber storage ring and optical
switches can selectively direct photons through a scattering unit to interact with an atom in a cavity
which is coherently controlled by a laser. (b) The energy structure of the atom: Ω1 is resonant with
the cavity mode and photon carrier frequency, while Ω0 is far-detuned. (c) Bloch sphere depiction
of the state of a photonic qubit in the {|⟳⟩ , |⟲⟩} basis and an operation applied by one pass through
the scattering unit. The rotations about ẑ by fixed angles (grey) are applied by the phase shifter and
beamsplitter, while the rotation about ŷ by a controllable angle θ (solid red) is applied to the atom
using the cavity laser. Projectively measuring the atom teleports this rotation onto the photon, but
may overshoot the target angle θ by π (dotted red) depending on the measurement outcome m.
This operation is a universal single-qubit primitive: by composing several of these operations and
adapting subsequent rotation angles based on measurement outcomes, arbitrary single-qubit gates
can be deterministically constructed. See Supplement 2 for a visualization of the gate mechanism.

to implement even using compact integrated photonics.

Further limiting the scalability of photonic quantum computers is the difficulty of integrating

many high-fidelity multi-photon gates into an optical circuit. This is an issue both for nonde-

terministic gate schemes [123, 125], which impose massive resource overheads for fault tolerant

operation due to low gate success probabilities [138], and for deterministic scattering-based ap-

proaches [243, 247, 59, 205, 274]. Although scattering-based two-photon gates can be individually

implemented with high fidelity [89, 242, 250, 25, 72], unrealistically large numbers of identical quan-

tum emitters are needed to realize sizeable quantum circuits [21], a problem which is exacerbated in

solid-state quantum emitters by poor indistinguishability due to homogeneous and inhomogeneous

broadening [144, 5]. An architecture for a quantum computer which uses only a single quantum

emitter to implement all gates in a quantum circuit would thus substantially improve the scalability

and experimental feasibility of scattering-based photonic quantum computation.

Here we show that the emerging concept of synthetic dimensions [266, 32] naturally lends itself

to such an architecture. Synthetic dimensions have recently generated great interest for exploring

topological physics in photonics [174], but have not been extensively applied to quantum photonic

systems. To form a synthetic dimension, one designs the couplings between states of a system,
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either by repurposing the usual geometric dimensions, such as space[143] or time [203, 260, 147,

104, 134, 181, 154], or by augmenting these dimensions with internal degrees of freedom, such as

frequency [268, 175, 26, 204, 261, 254], spin [43, 146, 235, 64], orbital angular momentum [142, 267], or

Floquet-induced side bands [24, 149]. Since couplings between states within the synthetic dimension

can be dynamically reconfigured and are not fixed by physical structure, one can scalably implement

lattices with intricate connectivity. This allows multiple photonic qubits to be manipulated in

synthetic space by a single quantum emitter without requiring spatially separated structures.

Our proposed design consists of a fiber loop coupled to a cavity containing a single coherently

controlled atomic qubit. Optical switches endow the counter-circulating photonic states with a

synthetic temporal dimension by allowing coupling between these states. By scattering photons

against the atom and subsequently rotating and projectively measuring the atomic state, operations

can be teleported onto the photonic qubits; these operations can be composed to deterministically

construct any quantum circuit. Readout of the photonic quantum state can be performed without the

need for single-photon detectors by sequentially swapping the state of the atom with each photonic

qubit.

Our scheme has several unique characteristics. Most notably, the only controllable quantum

resource is the single atomic qubit, which serves as a proxy to indirectly manipulate the photonic

qubits. All quantum1 operations and measurements on the photonic qubits are carried out by

operations performed on this atom which are teleported onto the photons. This reduces the pri-

mary implementation challenge to preparing a single strongly coupled atom-cavity system, which

has been experimentally demonstrated many times [53, 74, 214, 152, 55, 72, 205, 45]. The syn-

thetic time dimension allows the single atom to serve as the nonlinearity for all quantum gates and

provides effective all-to-all connectivity between the photonic qubits. The programmable nature

of the teleported gates allows the atom to sequentially apply each required single- and two-photon

gate without complex photon routing. This negates the requirement of conventional photonic QC

schemes for many identical quantum emitters to be integrated into a photonic circuit. Finally, this

design does not require single-photon detectors, which are a significant limitation to photonic QC.

Instead, measurement of the atomic state can be performed with near-100% efficiency using the

quantum jump technique, greatly improving the scalability of this design [162, 59, 74].

5.2 Design

The architecture for the scheme is shown in Figure 5.1(a). Qubits are encoded as trains of single

photon pulses counter-propagating through an optical storage ring, where the two propagation di-

rections {|⟳⟩ , |⟲⟩} form the computational basis. A single-photon source injects photon pulses into

1The only components which act on the photonic qubits are the 50:50 beamsplitter and π/4 phase shifter, which
are fully static and serve only as a fixed change of basis of the photonic quantum state, and the optical switches,
which only actuate between photon pulses in regions where the photon wavefunction is negligible.
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the ring; each photon is spectrally narrow about a carrier frequency ωc, has a pulse width τ , and

occupies its own time bin with temporal spacing ∆t≫ τ . (The photon source need not be determin-

istic as long as the time bin of each photon can be resolved. Alternately, a dedicated single-photon

source may not be needed, as the atom-cavity system discussed below could itself be used as the

source by using the control laser to excite the atom [153, 60].)

The storage ring contains a pair of asymmetrically placed2 optical switches, which can selectively

direct photons from the ring through a static 50:50 beamsplitter and π/4 phase shifter and into a

pair of waveguides. One of these waveguides is coupled to a cavity containing a single atom with a

Λ-shaped three-level energy structure, shown in Figure 5.1(b). The atom has non-degenerate ground

states |g0⟩ and |g1⟩ and an excited state |e⟩, and the |g1⟩ ↔ |e⟩ transition at frequency Ω1 is resonant

with cavity mode frequency and photon carrier frequency ωc. The atom is coherently controlled by a

laser which applies rotations between |g0⟩ and |g1⟩, and its state can be measured in the {|g0⟩ , |g1⟩}
basis. We refer to the subsystem consisting of everything except the storage ring and photon source

(the right half of Figure 5.1(a)) as the “scattering unit”. The round-trip optical path length through

the scattering unit is matched to the path length around the storage ring so that a photon returns

to its original time bin after passing through the scattering unit.

After a photon scatters against the atom and is returned to the storage ring, a rotation is applied

to the state of the atomic qubit and a projective measurement is performed, teleporting the rotation

onto the photonic qubit, as shown in the next section. By composing three of these teleported

rotations, arbitrary single-qubit gates can be deterministically constructed. A controlled phase-flip

(cσz) gate between two photons can also be constructed with a similar process, enabling universal

quantum computation. Readout of the final quantum state can be performed without the need for

single-photon detectors by sequentially swapping the state of the atom with each photonic qubit.

5.2.1 Rotation teleportation mechanism

Here we outline the mechanism by which a rotation gate may be teleported onto a photonic qubit;

we show in the next section that by composing these teleported rotations, arbitrary single-qubit

gates may be constructed. A derivation of the mechanism described here is shown in greater detail

in Appendices C.1 and C.2. Suppose we wish to apply a rotation to photon j, which occupies time

bin tj and is circulating in the storage ring in state |ψin⟩ = α |⟳⟩+ β |⟲⟩, where |⟳⟩ and |⟲⟩ denote
the two counter-circulating states. While the optical switches are in the “closed” state, photons

remain inside the storage ring; to operate on photon j, we “open” the switches at time tj − ∆t/2

and close them again at tj + ∆t/2 to direct photon j into the scattering unit. The photon passes

2To avoid time bin conflicts, the optical switches are asymmetrically placed in the storage ring. If the top switch
is placed k time bins (a distance kc∆t) from the horizontal midpoint of the ring, then, as shown in Figure 5.1(a),
the bottom switch is placed at a distance (k + 1/2)c∆t from the midpoint, and the waveguide it connects to is
c∆t/2 shorter than its counterpart. This ensures that when the bottom switch is set to the open state, directing a
counterclockwise pulse into the bottom waveguide, the nearest clockwise pulse is c∆t/2 distance away.
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through a π/4 phase shifter, which applies (up to a global phase) a Zπ
4
≡ Rz(π/4) =

(
e−iπ/8 0

0 eiπ/8

)

rotation, and a 50:50 beamsplitter, which applies B = 1√
2

(
1 i

i 1

)
. Before interacting with the atom,

the photon is a superposition of modes in the top and bottom waveguides; we label these spatial

modes as |0⟩ and |1⟩, respectively. We can thus relate the basis states of the ring and scattering unit

via the unitary transformation {|0⟩ , |1⟩} = BZπ
4
{|⟳⟩ , |⟲⟩}.

The |0⟩ component of the photon state is reflected by a mirror in the top waveguide, imparting

a π phase shift, while the |1⟩ component undergoes a cavity-assisted interaction with the atom

in the bottom waveguide, which is initialized in the state |+⟩ ≡ 1√
2
(|g0⟩+ |g1⟩). The |g1⟩ ↔

|e⟩ transition frequency Ω1 is resonant with the cavity mode and photon frequency ωc, while the

|g0⟩ ↔ |e⟩ frequency Ω0 is far-detuned. Thus, relative to the phase of the |0⟩ mode, a π phase

shift is applied to the |1⟩ ⊗ |g1⟩ component of the |photon⟩ ⊗ |atom⟩ quantum state, implementing

the unitary transformation corresponding to a controlled-Z gate between the atom and the photon,

cσz = eiπ|1⟩⟨1|⊗|g1⟩⟨g1|. After scattering, the photon passes back through the beamsplitter and phase

shifter and is returned to the storage ring. The joint state |Φ⟩ of the photon-atom system after a

round trip through the scattering unit is:

|Φ⟩ =
(
Zπ

4
B ⊗ 1

)
cσz

(
BZπ

4
⊗ 1

)
(|ψin⟩ ⊗ |+⟩) . (5.1)

After the photon has returned to the storage ring, a rotation Rx (−θ) = exp (iσxθ/2) is applied

to the atomic qubit. Finally, a projective measurement of the atomic state in the {|g0⟩ , |g1⟩} basis
is performed, obtaining a bit m ∈ {0, 1}. As shown in Appendix C.1, this atomic measurement

projects the state of the photonic qubit to:

|ψout⟩ = Zπ
4
σz (−σy)m⊕1

Ry (θ)Zπ
4
|ψin⟩

= imZ 5π
4
Ry (θ + π(m⊕ 1))Zπ

4
|ψin⟩ ,

(5.2)

where Ry (θ) = exp (−iσyθ/2) and m ⊕ 1 denotes addition modulo 2. Thus, the measurement

teleports the Rx(θ) rotation of the atom to the Ry(θ) or Ry(θ+π) rotation of the photon, depending

on m. The full sequence of operations is shown in Figure 5.2.

This teleportation scheme is an inversion of the paradigm of teleportation-based quantum com-

puting [110, 82, 167]: in both cases, the original data qubit is entangled with an ancilla using a cσz

operation, but instead of rotating and measuring the data qubit to teleport the modified state onto

the ancilla, in our scheme we rotate and measure the ancilla (the atom) to teleport a rotation onto

the data qubit (the photon).
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photon
atom

Figure 5.2: Quantum gate sequence corresponding to one pass of a photon through the scattering
unit. The projective measurement teleports the rotation applied to the atomic qubit onto the
photonic qubit.

5.2.2 Constructing arbitrary single-qubit gates

We now show that the teleported gate operation of Eq. 5.2 is sufficient to construct arbitrary single-

qubit gates. The purpose of the Zπ
4
operations performed by the phase shifter is to rotate the basis

in which the Ry(θ) gate is applied. Two passes of a photon through the phase shifter corresponds

to a rotation on the Bloch sphere (see Figure 5.1(c)) about ẑ by 90◦; this change of basis causes a

subsequent Ry(θ) to effectively rotate about x̂. An additional two passes through the phase shifter

rotates x̂ to −ŷ, allowing Ry(θ) to act about ŷ again. The goal here is to construct an operation

that has the form U = Ry(θ3)Rx(θ2)Ry(θ1), which is sufficient to implement any single-qubit gate

up to an overall phase decomposed via Euler angles [110].

Consider a sequence of three teleported rotation gates (Eq. 5.2) about angles θ1, θ2, θ3 which

yield measurement results m1,m2,m3. As we build up the target operator U with these successive

rotations, the outcomes m1,m2,m3 can result in extraneous Pauli gates between rotations which

effectively offset the target angles θ1, θ2, θ3 by π, as in the second line of Eq. 5.2. Intuitively, this is

equivalent to constructing an arbitrary rotation in 3D space using only fixed 90◦ rotations about ẑ,

together with variable rotations about ŷ which may overshoot by π.

Borrowing a concept from measurement-based quantum computation [110, 167, 200], we apply

rotations to the atomic qubit about adaptive angles of θ2 (m1) and θ3 (m2,m1), each of which

depends on the results of the preceding measurements. This allows us to propagate the Pauli errors

from the middle of the gate to the front and consolidate them as a single error term. The sequence

of three rotations performed in this adaptive basis thus implements the operation:

U = ε(m3,m2,m1)× Zπ
4
Ry (θ3(m2,m1))Rx (θ2(m1))Ry(θ1)Zπ

4
, (5.3)

where the rotations are implicitly programmed to implement U in the basis rotated by Zπ
4
and where

the error term ε(m3,m2,m1) is σx, σy, or σz up to a global phase. This error term ε can then either

(i) be implicitly removed by programming a subsequent gate U ′ to instead implement U ′ε−1 or (ii)

be explicitly removed by scattering the photon against the atom initialized in the non-interacting

|g0⟩ state or in the fully-interacting |g1⟩ state, applying σx or σz, respectively. The full derivation
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for this gate construction process is shown in much greater detail in Appendix C.2.

5.2.3 Two-photon gates

In addition to implementing single-qubit gates, a two-photon entangling gate is needed for universal

computation. A controlled phase-flip gate cσz between two photonic qubits j and k can be con-

structed through a sequence of three scattering interactions in a manner similar to the protocol

described by Duan and Kimble [59]. However, the beamsplitter and phase shifter, which are needed

to implement the single-qubit gates in our scheme, only allow us to apply operations of the form

shown in Eq. 5.1 to the photon-atom system with each pass of a photon through the scattering unit.

This prevents us from performing the exact protocol described in Ref. [59] despite the similarities

of the proposed physical systems.

We can resolve this complication by modifying the protocol to terminate with a measurement on

the atom. We denote the operation applied to the photon-atom state by a pass of photon j through

the scattering unit interacting with the atom a as:

ζja ≡
(
Zπ

4
B
)j

cσjaz
(
BZπ

4

)j
. (5.4)

To implement cσjkz between photons j and k, we pass photon j through the scattering unit, then

k, then j again, separated by Ry(±π2 ) rotations applied to the atom, as described in Appendix C.4.

This results in the state

ζjaRay(π/2)ζ
kaRay(−π/2)ζja (|ψjk⟩ ⊗ |+⟩) , (5.5)

where |ψjk⟩ is the arbitrary state of photons j and k and where the atom is initialized to |+⟩. After

this scattering sequence, we measure the state of the atom, which projects the two-photon state to:

(
Zπ

4
B ⊗ Zπ

4
B
) (
BZ(−1)m π

2
B ⊗ 1

)
× cσjkz ×

(
BZπ

4
⊗BZπ

4

)
|ψjk⟩ , (5.6)

where the extraneous single qubit terms BZπ
4
, Zπ

4
B, and BZ(−1)m π

2
B are artifacts of the pho-

tons passing through the beamsplitter and phase shifter. These extra gates are not problematic:

when constructing a circuit from single-qubit gates and cσz, they may be removed by programming

previous and subsequent single-qubit gates to include the inverse gates.

It is worth noting two alternative implementations of the photon-photon cσz gate. First, using

the SWAP operation implemented by Eq. 5.7, the states of one photonic qubit and the atom can be

exchanged, and the second photon can directly interact with the state of the first, as discussed in

Appendix C.4. Second, the protocol demonstrated by Ref. [89] can be implemented on this system,

reducing the amortized number of scattering passes per cσz.

Our proposed device can thus implement arbitrary single-qubit gates and a two-photon cσz gate.
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ROTX  θ1
MEAS  m1
INIT  |+>
OPEN  t1-∆t/2+2*N*∆t
CLOS  t1+∆t/2+2*N*∆t
OPEN  t1-∆t/2+3*N*∆t
CLOS  t1+∆t/2+3*N*∆t
ROTX  (θ2+π*(1-m1))*(-1)^m1
MEAS  m2
INIT  |+> 

(a) (b)

(c)(d)

Figure 5.3: Conceptual illustration of compiling a quantum circuit into an instruction sequence
to be performed on the device. (a) A generic target quantum circuit. (b) Decomposition into
an equivalent circuit of single-qubit and cσz gates. (c) The circuit is further decomposed into a
sequence of scattering interactions. This sequence can be assembled on a classical computer into an
instruction set with six distinct primitives which correspond to physical actions. (d) The controllable
elements of the quantum device are the optical switches, cavity laser, and atomic state readout.

This comprises a universal gate set [18], so the device can perform any quantum computation.

5.2.4 Arbitrary circuit compilation

To implement an arbitrary n-qubit operator U ∈ U(2n), one could employ a three-step circuit

compilation process outlined in Figure 5.3. First, decompose U into a sequence of single-qubit gates

and cσz operations. This is a well-studied problem [165] and can be done using the same operator

preparation routine described in our previous work [21], but with an additional O(n) speedup, as

this scheme has all-to-all instead of nearest-neighbor connectivity between qubits. Second, represent

each cσz as in Eq. 5.6 and decompose each single-qubit gate via Euler angles into rotations which

may be teleported onto the photonic qubits. Finally, use a classical control system to modify the

adaptive rotations which are applied to the atomic qubit based on the measurement outcomes during

operation and to explicitly correct for ε Pauli errors when necessary. A more detailed discussion of

the compilation process and an example instruction sequence to implement a three-qubit quantum

Fourier transform can be found in Appendices C.5 and C.6.
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5.2.5 Quantum state readout

After applying the desired quantum operation using the circuit compilation routine outlined above,

the state of the photonic qubits must be measured to obtain a classical result. This can be done

without the need for single photon detectors with their limited detection efficiencies by sequentially

swapping the quantum states of each photonic qubit with that of the atom and repeatedly measuring

the atomic state. To perform this SWAP operation, we scatter the desired photonic qubit j against

the atom three times; between scattering operations, we apply the rotation Ry(π/2)Rx(π) to the

atomic qubit. Denoting this rotation as ρa and using ζja as defined in Eq. 5.4, it is easily verified

that

(BZπ
4
)jζjaρaζjaρaζja(Zπ

4
B)j = eiπ

(
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

)
, (5.7)

which is the SWAP operation up to a factor of -1. Here, (BZπ
4
)j and (Zπ

4
B)j are the operations

applied to photon j on the outgoing and return trip from the scattering unit, respectively.3

5.3 Imperfection analysis

We now present a theoretical model to analyze the performance of our scheme in the presence of

experimental imperfections. The main sources of error for our proposed scheme can be grouped into

three classes: (i) deformation of the input pulse shape after scattering off the atom-cavity system,

(ii) atomic spontaneous emission loss, and (iii) photon leakage due to attenuation and insertion loss

while propagating through the storage ring and optical switches.

In our analysis, we assume the cavity mode frequency ωc is exactly resonant with the atom

|g1⟩ ↔ |e⟩ transition frequency Ω1, since the detuning can be calibrated to be zero in both free-space

and nanophotonic systems [214]. Our design and simulations are agnostic to the carrier frequency4.

We also assume that rotations of the atomic state using the cavity laser and measurement of the

state can be done with fidelity F ≈ 1, as both processes have been demonstrated experimentally

with infidelities significantly lower than the error sources listed above [36, 74, 29, 166, 95, 38]. For all

simulations here, we choose a photon pulse width of τ = 100/κ, a time range (bin size) ∆t = 500/κ,

and compute cooperativity with fixed γs = κ/5, where κ is the decay rate of the cavity into the

waveguide and γs is the atomic spontaneous emission rate. This choice of parameters were motivated

by a sample of experimental cavity setups enumerated in Figure 5.4 and result in a temporal bin

size of order 100 nanoseconds for κ/2π ∼ 1GHz. Greater detail is given in Appendix C.7.

3This construction of the SWAP gate starts with the photon in the middle of the scattering unit. If one starts with
the photon in the storage ring, the state SWAP-ed to the atom is actually BZπ

4
|ψj⟩. As before, this can be resolved

by including (BZπ
4
)−1 in preceding single-qubit gates. Alternately, the atomic state can be directly manipulated

after the SWAP gate is applied and before measurement to remove the extraneous BZπ
4
.

4In practice, the carrier frequency is chosen according to the transition frequency of the atomic qubit. If, for
example, the atomic qubit is assumed to be a 87Rb atom, the carrier frequency will be chosen to be ωc ≈ 3.8× 1014

Hz [89].
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5.3.1 Deformation of photon pulses

We use the analytical technique described by Shen and Fan [223, 224] to exactly solve the single-

photon transport problem of the coupled atom-cavity-waveguide system and obtain the output pulse

ϕout(t) when the system is driven by an input pulse ϕin(t). This treatment captures the full quantum

mechanical response of the system to a single-photon input Fock state for an arbitrary initialization

of the atom without making the semiclassical assumption of a weak coherent input state.

Figure 5.4(a) shows the output pulse shapes for a single-photon Gaussian input pulse when the

atom is initialized in states |g0⟩ or |g1⟩. For the |g0⟩ initialization, the response is identical to an

empty cavity, since the |g0⟩ ↔ |e⟩ transition is far-detuned from the cavity resonant frequency.

In this case, the output pulse is slightly delayed from the input pulse. For the |g1⟩ initialization,
the photon is directly reflected from the front mirror of the cavity since the dressed cavity modes

are well-separated in the strong coupling limit from the input photon frequency by the vacuum

Rabi splitting, so the delay is minimal. We denote the difference in the delays of the |g0⟩ and |g1⟩
scatterings as ∆t01 (see inset). We compute the pulse shape fidelity Fshape as the overlap integral

of the output pulse with the input pulse after both pulses have been normalized to have unit area,

and the pulse shape infidelity is 1−Fshape. This quantity only describes mismatch of the shapes of

the input and output pulses, not mismatch of the pulse areas; the infidelity due to photon loss is

computed as a separate quantity.

In Figure 5.4(b), we plot the shape infidelity of various states as a function of the single-atom

cavity cooperativity C = 4g2/κγs, where g is the atom-cavity coupling strength. The pulse shape

infidelity from scattering off the |g1⟩ state decreases to negligible values as C increases, while the

infidelity of |g0⟩ reaches an asymptote at 8 × 10−4 due to the delay of the output pulse by a time

which is independent of C. The infidelity from scattering against |+⟩ = (|g0⟩+ |g1⟩)/
√
2 thus reaches

a value of 4 × 10−4. Since the atom will usually be initialized to the |+⟩ state during operation of

the device, it is desirable to minimize the infidelity of this interaction. This can be done by equally

distributing the delays between the |g0⟩ and |g1⟩ states by delaying the reference pulse by a time

difference ∆t01/2, adding path length c∆t01/4 to the top waveguide in Figure 5.1(a). This results

in a “delay corrected” infidelity of 2× 10−4, which is independent of both cavity cooperativity (for

C ≫ 1) and atomic state initialization.

5.3.2 Atomic spontaneous emission loss

In Figure 5.4(b), we also plot the photon leakage probability for a scattering interaction. Atomic

spontaneous emission noise from the excited |e⟩ state into modes other than the cavity mode at

a rate γs results in a partial loss of the photon, resulting in an output pulse with total photon

number
∫
dt |ϕout(t)|2 < 1. We calculate the probability Ps of spontaneous emission loss as Ps = 1−∫

dt |ϕout(t)|2∫
dt |ϕin(t)|2 . Spontaneous emission noise only applies to the |1⟩⊗|g1⟩ component of the photon⊗atom

state; since the atom will usually be initialized to the |+⟩ state, if we average over the possible input
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Figure 5.4: (a) Output pulse shapes for |g0⟩ and |g1⟩ initialization when a cavity with cooperativity
C = 180 is driven by a Gaussian input pulse. The inset highlights the behavior near maximum:
the |g0⟩ output pulse is delayed and the |g1⟩ output has reduced amplitude. (b) Shape infidelity
and photon leakage probability as a function of cavity cooperativity. Solid blue lines show the pulse
shape infidelity when the reference pulse is delayed by ∆t01/2. (c) Estimated single-qubit circuit
depth achievable while maintaining > 50% fidelity as a function of cavity cooperativity and photon
attenuation per cycle, assuming one scattering interaction every cycle and no error correction. Dotted
lines show various experimentally demonstrated cooperativity values in similar cavity systems. Lines
1-10 correspond respectively to Refs. [89], [55], [214], [152], [72], [161], [53], [137], [45], and [236].
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photon states, we obtain an average leakage probability of P̄s = Ps/4. This average photon loss

probability is plotted as the red line in Figure 5.4(b) and ranges from about 5% to 0.0005% over the

range of cooperativity values shown.

5.3.3 Optical attenuation and insertion loss

Finally, we account for loss due to attenuation in the optical storage ring and insertion loss from

the switches as an average loss per cycle L. To estimate the maximum circuit depth D attainable

with an overall fidelity Ftarget, we compute a “bulk fidelity” per cycle accounting for shape infi-

delity, spontaneous emission loss, and attenuation while propagating through the storage ring and

optical switches. For simplicity, we assume the circuit operates on only a single photonic qubit

and that the photon is scattered against the atom with every pass through the storage ring. The

achievable circuit depth operating with success probability Ftarget is thus the maximum D satisfying[
Fshape × (1− P̄s)× (1− L)

]D ≥ Ftarget, which is plotted as a function of cavity cooperativity and

propagation loss in Figure 5.4(c) for Ftarget = 50%. Using optimistic but not unrealistic values

for cooperativity [47, 45, 236] C = 104 and cycle loss L = 10−4, we compute a bulk fidelity of

F ≈ 99.95%. This allows for an estimated depth of D ≈ 2000 scattering operations while maintain-

ing 50% success rate, and results in an error probability per gate (EPG) of ∼ 5 × 10−4, below the

estimated ∼ 10−3 EPG threshold for fault tolerance [168, 80, 194, 119]. Additionally, photon loss,

which is likely the main error mechanism, can be efficiently corrected up to a per-gate loss of ∼ 10−2

using concatenated codes [122].

5.4 Discussion

In this chapter, we have shown how to use a single controllable quantum emitter to perform any

quantum operation on a set of time-multiplexed photonic qubits. Related to but distinct from this

work are proposals for generating time- and frequency-multiplexed 2D cluster states using a single

or pair of quantum emitters [188, 69, 270, 34] or by using homodyne measurement of CV quantum

systems [239], and experimental demonstrations using parametric nonlinearities [12, 131]. Although

2D cluster states are a universal resource for measurement-based quantum computation [167], the

schemes that prepare these states can apply only a single type of quantum operation to the photonic

qubits, and require single-photon detectors, with their associated limitations, for universality and

state readout. In contrast, our scheme directly implements the quantum circuit model of QC, can

deterministically construct any quantum gate, and can perform state readout without the need for

photon detectors.

Our work also builds upon the well-known results of Ref. [59]. The physical setups are indeed

similar: a cavity containing controllable three-level atom which can mediate interactions between

scattered photons. However, Ref. [59] showed how the atom-cavity system can apply a fixed cσz
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operation to a pair of photonic qubits, while our work shows how a loop-based design incorporating

the cavity can perform any quantum operation on any number of photonic qubits. Notably, the

single-qubit gate teleportation mechanism described in Sections 5.2.1-5.2.2 and the photodetector-

free circuit compilation and state readout routines described in Sections 5.2.4-5.2.5 are, to our

knowledge, unique to this work.

The main practical advantage of our scheme is the experimental simplicity of the design. Com-

pared to other photonic QC approaches, our scheme shows a pathway to implement scalable, de-

terministic, gate-based quantum computation with photonics. Also, our scheme does not require

single-photon detectors, which are a limitation for photonic approaches due to their low detection ef-

ficiencies. Compared to other platforms for quantum computing where qubits are individual physical

structures, such as superconducting circuits and trapped ion systems, having only one controllable

qubit provides a significant advantage to scalability: to add more qubits to our design just requires

lengthening the fiber loop, while to add more qubits to a superconducting device requires adding

complex individually-addressable components.

However, our scheme is not without drawbacks: the design requires high cavity cooperativity and

low fiber attenuation, which are challenging but feasible to implement [161], and it relies on optical

switches with very low insertion losses, although recent advances in lithium niobate modulators [251]

may soon allow for this. Additionally, although having only a single controllable qubit does greatly

simplify the experimental setup, it prevents two-qubit and most single-qubit gates in a quantum

circuit from being performed in parallel.

More broadly, if we generalize the photon storage mechanism for our proposed device and consider

synthetic dimensions other than time multiplexing, we could potentially further improve the scalabil-

ity of our design. Instead of using counter-propagating optical modes, one could encode each qubit in

the polarization basis and combine with fiber or free-space storage loops, as in Refs. [164, 209, 190].

With suitable design of the atom-cavity interacting system, frequency [268, 175] or angular momen-

tum modes [142] could be also used as an alternative synthetic dimension, which could potentially

mitigate the reliance of our design on low-loss optical switches, as demonstrated for heralded single-

photon sources [108, 111, 109, 150]. These concepts would naturally lend themselves to studying

quantum many-body physics of interacting Hamiltonians in synthetic space [174], which is difficult

to realize in purely photonic platforms without the strong single-photon nonlinearity of the atom

which we employ here [264, 173].

5.5 Conclusion

In this chapter we have presented a scheme for universal quantum computation using a single co-

herently controlled atom to indirectly manipulate a many-photon quantum state. We have shown

that arbitrary single-qubit gates can be deterministically constructed from rotations applied to the
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atomic qubit and teleported onto the photonic qubits via projective measurements. Using similar

scattering processes, two-photon cσz gates can be implemented, and readout of the photonic quan-

tum state can be done using only atomic measurements with efficiencies far greater than that of

state-of-the-art photon detectors. Our proposed scheme has high fidelity even in the presence of

realistic experimental imperfections and offers significant advantages in required physical resources

and experimental feasibility over many existing paradigms for photonic quantum computing.



Chapter 6

Quantum emulation

Synthetic dimensions have generated great interest for studying many types of topological, quantum,

and many-body physics, and they offer a flexible platform for simulation of interesting physical

systems, especially in high dimensions. In this chapter, we describe a programmable photonic

device capable of emulating the dynamics of a broad class of Hamiltonians in lattices with arbitrary

topologies and dimensions. We derive a correspondence between the physics of the device and

the Hamiltonians of interest, and we simulate the physics of the device to observe a wide variety

of physical phenomena, including chiral states in a Hall ladder, effective gauge potentials, and

oscillations in high-dimensional lattices. Our proposed device opens new possibilities for studying

topological and many-body physics in near-term experimental platforms.

6.1 Introduction

The emerging concept of synthetic dimensions in photonics has generated great interest for topolog-

ical physics [63, 266, 24, 195, 174], optimization [104, 154, 147, 182], and quantum simulation and

computation [32, 175, 44, 20, 197, 210, 262, 131]. Synthetic dimensions are formed by controlling cou-

plings between degrees of freedom of a system, either by repurposing the usual geometric dimensions,

such as space [143] or time [203, 260, 147, 104, 154, 135, 244, 96], or by augmenting these dimensions

with internal degrees of freedom, such as frequency [268, 175, 26, 98, 254], spin [43, 146, 235, 63], or

orbital angular momentum [142, 267]. Since couplings in synthetic dimensions can be dynamically

reconfigured and are not fixed by a physical structure, one can scalably implement high-dimensional

lattices with complex topologies, making this an ideal platform for quantum simulation.

90
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6.2 Design

Here we describe a programmable photonic device capable of simulating the dynamics of interacting

bosons in lattices with arbitrary dimensions, topologies, and connectivities using a synthetic time

dimension. A large class of prototypical condensed matter Hamiltonians can be described by local

two-body interactions on an arbitrary lattice. This class of Hamiltonians, which includes tight-

binding models, the Hubbard and Bose-Hubbard models and their various extensions [66], and the

Harper-Hofstadter-Hubbard model [206], can in general be described as (using ℏ = 1 throughout

this chapter):

Ĥ = −
∑

⟨m,n⟩

(
κmne

iαmn â†mân +H.c.
)
+ µ

∑

m

â†mâm + U
∑

m

â†mâ
†
mâmâm, (6.1)

where κmn and αmn respectively denote the tunneling coefficients and phases between connected

sites ⟨m,n⟩, â†m creates a boson at site m, µ is the chemical potential, and U is the Hubbard

interaction strength. The first term describes the tunneling of a particle between sites m and n,

with a complex tunneling strength with amplitude κmn and phase αmn; the second term sets the

energy per particle µ; the third term is an on-site interaction potential with strength U which is

active when a site contains more than one particle. This very general class of Hamiltonians exhibits

rich phase diagrams and relates to quantum magnetism, high-temperature superconductors, and

magnetic insulators, among many other applications. [13, 269, 77]

We propose a system that emulates the dynamics of the Hamiltonian in Eq. 6.1 using a synthetic

temporal dimension. The design consists of a waveguide loop exhibiting a Kerr nonlinearity, which

we refer to as the “storage ring”, in which a train of single-photon pulses propagates in a single

direction, with each pulse occupying its own time bin. A second loop, the “register”, is connected to

the storage ring using a Mach-Zehnder interferometer (MZI) with two tunable phase shifters, θ and

ϕ. The hardware of the device is chosen to emulate each term of the Hamiltonian with dedicated

components. The first term of Eq. 6.1 is implemented by the tunable MZI; the second term arises

naturally from the total photon energy in each time bin; the two-photon potential in the third term

results from using a Kerr-nonlinear fiber for the storage and register loops. We will briefly derive

how each component implements the desired behavior and then describe how to program the device.

6.3 Device physics

A system evolving for a time interval t under the Hamiltonian given in Eq. 6.1 has a propagator

e−iĤt. We can split the exponential of the summation into a product of exponentials to within

O(κ2 + κU cosα), where κ and α are typical values of κmn, αmn (see Appendix D.1 for a more
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Figure 6.1: Architecture for the programmable photonic quantum emulator described in this chap-
ter. (a) The physical design of the device. Classical laser pulses or single-photon pulses propagate
clockwise through a fiber storage ring. A programmable Mach-Zehnder interferometer connects the
storage ring to a register loop which has an optical path length ∆x equal to the length of a single time
bin. By setting the phase shift values in the MZI, the hopping coefficients and phases κmn, αmn can
be programmatically adjusted. Photons have energy µ ≡ ℏω0, and by using a χ(3)-nonlinear fiber, a
nonlinear interaction potential U can be emulated. (b) An example 2D grid lattice to be emulated
by the device. Node labels correspond to photon pulse indices, and the device as shown in panel
(a) is in the process of constructing the orange edge connecting nodes 1 and 2 with (κ1,2, α1,2).
(c) Illustration of a single clock cycle of the emulator constructing the interaction (κ1,2, α1,2) in
three steps. First, phase shifters are set to transfer photon 1 into the register. Second, photon 1 is
interacted with photon 2 using θ = 2κ1,2 and ϕ = α1,2. Third, the pulse (which now may contain a
mixture of photons 1 and 2) is returned to its original time bin. (d) The evolution of the state of the
device while emulating a tight-binding Hamiltonian over the lattice shown in panel (b). The bottom
panel depicts the exact evolution of the target Hamiltonian over time, while the top panel shows the
state of the emulator at each clock cycle, including register swaps and intermediate states between
full iterations. A large value of κ = 0.2 was used for visual clarity, but more accurate results may
be obtained by using smaller κ and running the emulation for a commensurately longer wall-clock
time.
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detailed derivation):

e−iĤt = exp


−it


−

∑

⟨m,n⟩
κmn

(
eiαmn â†mân + e−iαmn â†nâm

)
+ µ

∑

m

â†mâm + U
∑

m

â†mâ
†
mâmâm






≈


 ∏

⟨m,n⟩
exp

(
iκmn

(
eiαmn â†mân + e−iαmn â†nâm

))


t

× e−it(µ
∑

m â†mâm+U
∑

m â†mâ
†
mâmâm).

(6.2)

We therefore have a propagator that is a product of two parts: a continuous time evolution term

e−it(µ
∑

m â†mâm+U
∑

m â†mâ
†
mâmâm), which arises naturally from the photon energy per time bin (µ) and

Kerr nonlinearity of the fiber (U), and the exp(iκmne
iαmn â†mân+H.c.) terms, which are implemented

in discrete time evolution by a sequence of passes through the tunable MZI. We now show how the

device physics emulates the dynamics of the propagator.

For the chemical potential term, we can write the Hamiltonian for a photon with an arbi-

trary spectrum as ĤEM =
∫
dk
∑
m

1
2ℏωk

(
â†m,kâm,k + âm,kâ

†
m,k

)
. If we can assume that the

photons are spectrally narrow about a carrier frequency ω0, we can approximate this as ĤEM ≈
1
2ℏω0

∑
m

(
â†mâm + âmâ

†
m

)
= ℏω0

∑
m

(
â†mâm + 1

2

)
≡ µ

∑
m â

†
mâm, which directly gives us the de-

sired chemical potential term.

The nonlinear potential naturally arises from the use of a nonlinear fiber. Consider a sec-

tion of a Kerr-nonlinear fiber corresponding to one time bin, with length ∆x and volume V .

The material polarization at frequency ω induced by an electric field E(ω) is given by PNL(ω) =

3ε0χ
(3)(ω)|E(ω)|2E(ω), where χ(3) is the third-order susceptibility tensor, which can be treated as

a scalar for isotropic media such as glass. The energy density UNL is related as PNL = ∂UNL/∂E
∗,

and the Hamiltonian of this system, again assuming a narrow bandwidth about ω0, is ĤNL =∫
V
U(ω0)d

3r⃗. After quantizing the field amplitudes as E(ω0) 7→
√

ℏω0

2ϵ0V

(
â†k0e

+i(ω0t−k0z) +H.c.
)
and

transforming into real space, we obtain ĤNL =
(

9ℏ2ω2
0

8ϵ0n4
0V

2

∫
V
χ(3)d3r

)
â†â†ââ + C ≡ Uâ†â†ââ + C,

where the nonlinear potential coefficient is U =
9ℏ2ω2

0

8ϵ0n4
0V

2

∫
V
χ(3)d3r and where C is some constant

corresponding to an overall energy shift. Applying this to each time bin gives us the desired

U
∑
m â

†
mâ

†
mâmâm nonlinear potential term.

Finally, the hopping terms arise from programmatically modulating the phase shifts in the MZI.

To interfere two photons m and n with strength κmn and phase shift αmn, the basic idea is to

swap pulse m into the register ring, wait for pulse n to reach the MZI, interfere the pulses, then

return pulse m to the storage ring when time bin m cycles back. Consider the MZI shown in Figure

6.1(a) with phase shifters ±ϕ and θ. Define bosonic mode operators â†n, â
†
0 and b̂†n, b̂

†
0, which create

a photon in time bin n or time bin 0 (the register bin), and at the input or output of the MZI,
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respectively. We can relate the output and input mode operators as:

[
b̂†0
b̂†n

]
=

(
cos θ2 ieiϕ sin θ

2

ie−iϕ sin θ
2 cos θ2

)[
â†0
â†n

]

= exp

[
i
θ

2

(
eiϕâ†0ân + e−iϕâ†nâ0

)][â†0
â†n

]

≡ M̂0,n (θ, ϕ)

[
â†0
â†n

]
.

(6.3)

It is easily verified that the following identity holds: M̂0,m (π,−π/2) M̂0,n (θ, ϕ) M̂0,m (π,+π/2) =

exp
[
iθ/2

(
eiϕâ†mân + e−iϕâ†nâm

)]
≡ T̂m,n (θ, ϕ). If we define κ ≡ θ/2 and α ≡ +ϕ, we obtain the

transfer matrix:

T̂mn (κ, α) = exp
[
iκ
(
eiαâ†mân + e−iαâ†nâm

)]
. (6.4)

The middle θ phase shifter thus allows us to control the strength of the coupling κ, while the outer

phase shifters ±ϕ control the hopping phases.

By performing this sequence of passes through the MZI T̂⟨m,n⟩ ≡
∏

⟨m,n⟩ T̂mn (κmn, αmn) for

every photon pair ⟨m,n⟩ which corresponds to an adjacent pair of lattice sites m and n in the

Hamiltonian, we complete one “iteration” of the emulator. If we allow the system to evolve for t

iterations, we obtain a total transfer matrix which is exactly the first term in Eq. 6.2:

T̂ t
⟨m,n⟩ =


 ∏

⟨m,n⟩
exp

[
iκmn

(
eiαmn â†mân +H.c.

)]


t

(6.5)

Therefore, all three components of the propagator are present, and the evolution of a state in the

device for t iterations is described term-by-term by the propagator in Eq. 6.2. To adjust the relative

values of continuous time evolution variables (µ,U) and discrete time evolution variables (κ, α), one

can adjust the photon energies µ, Kerr interaction strength U , time bin size ∆x, or phase shifter

values θ, ϕ.

The programmable MZI can construct lattices with arbitrary topology and connectivities. Con-

sider a Hamiltonian of the form in Eq. 6.1 defined over a lattice described by an undirected graph

G = (V,E), as shown in Figure 6.1(b). We designate a time bin m for each lattice site m ∈ V , and

for each edge e = (m,n) ∈ E which couples sites m and n with coupling strength κmn and hopping

phase αmn, we perform a sequence of three passes through the MZI to interact time bins m and n, as

in Figure 6.1(c). The first pass M̂0,m (π,+π/2) swaps photon m into the empty register; the second

pass M̂0,n (2κmn, αmn) performs the interaction between the register and time bin n; the third pass

M̂0,m (π,−π/2) returns the photon to time bin m. This set of operations takes one “clock cycle”

to complete, which is defined as the time for a pulse to fully propagate once around the storage
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ring. Constructing all e ∈ E completes one “iteration” of the emulator, and the state is allowed to

evolve for t iterations. The edges can be constructed in any order as long as κ is small, which is

always possible to do by decreasing κ, µ, U by some constant factor and running the emulator for

a commensurately longer wall-clock time. It is also possible to modify the design of this device to

include hardware optimizations for specific graphs. For example, the iteration time of a 2D square

lattice with N sites can be reduced from N cycles to 2
√
N cycles per iteration by having two register

rings of size N and
√
N to explicitly handle the vertical and horizontal strides of the graph.

6.4 Simulations and topological signatures

To more concretely show the capabilities of our proposal, we now provide several demonstrations of

the device emulating systems of interest with experimentally measurable signatures. We show the

device can create an effective gauge potential by emulating a synthetic Hall ladder, we demonstrate

the quantum nature of the device by trapping a a two-photon state using a synthetic field, and

we demonstrate the reconfigurability of the device by emulating the evolution of a Bose-Hubbard

Hamiltonian on a four-dimensional tesseract lattice. For these demonstrations, we wrote a Python

simulator1 built with QuTiP [107] which efficiently simulates the detailed physics of the device em-

ulating a system of interest, such as register swaps and time bin interactions, and compares this

against the exact Hamiltonian evolution. The simulator represents the state space of the system

with a permutationally invariant bosonic lattice representation allowing for tractable simulation of

Hamiltonians over moderately large lattices. This simulation method is described in greater detail

Appendix D.3.

Figure 6.2 shows an emulated synthetic Hall ladder and obtains a similar bandstructure as the

recent experimental results of Ref. [63]. This system exhibits chiral edge states in the presence of an

effective magnetic field, which is induced by adding translation-invariant hopping phases ±α/2 to

the outer edges of the ladder using the MZI. Figure 6.2(a) depicts the emulated ladder system; left

and right nodes on each rung are mapped to pulses in even- and odd-indexed time bins. The band

structures for the target and emulated Hamiltonians for this system are shown in Figure 6.2(b) for

hopping phases α = 2π/3 and α = 0. Chiral edge states are clearly visible in the case of α = 2π/3,

indicating the presence of an effective gauge potential. The propagation of these chiral currents on

the left leg of the ladder is shown Figure 6.2(c). In the presence of a gauge field, only one-way motion

is allowed. The band structures for the synthetic case are computed by simulating one iteration of

the propagator Ĝ = e−iĤ(t=1) in the device, taking the matrix logarithm Ĥ = log Ĝ
−i , and then

diagonalizing Ĥ; k values are computed using peak detection of the eigenstate Fourier transform

(see Appendix D.4).

As shown in Fig. 6.2(b), the band structure from the emulated system (bottom row) closely

1All simulation code for this chapter is available online at github.com/fancompute/synthetic-hamiltonians.
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Figure 6.2: (a) Lattice diagram for a two-legged synthetic Hall ladder emulated with the device.
By varying the inter-rung hopping phases α, an effective controllable magnetic field can be induced
in the lattice. (b) Band structure of the system computed by diagonalizing the Hamiltonian for the
exact case (top panels) and as emulated in the device (bottom) in the presence (left) and absence
(right) of a synthetic magnetic field. Projection operators to the left and right nodes are color coded
for each eigenstate. In all cases the Hamiltonian is represented in real space; for each eigenstate
with eigenvalue E, we compute k with peak detection of its Fourier transform. This results in small
numerical instabilities which are present in both the exact and emulated cases. Other parameters
for this simulation: κ = 0.1, α = 2π/3 or α = 0, µ = U = 0, number of lattice sites D = 1000,
number of bosons N = 1. (c) Experimental signature for the propagation of chiral edge currents on
the left leg of the ladder. A Gaussian input state is created with some initial k = ±0.1 by exciting
multiple time bins with a phase difference between bins. When the gauge field is turned off (α = 0),
the pulses propagate in opposite directions, but when the field is turned on (α = 2π/3), the motion
in one direction is inhibited.

matches the desired band structure (top row, see also Ref. [99]), as well as the experimental results

from very different platforms (Fig. 2 of Ref. [63]). This shows that the simulation of our device

physics faithfully constructs the desired synthetic Hall Hamiltonian. Furthermore, because this

demonstration uses only single boson, the single photon pulse could be substituted for a classical

laser pulse which could be periodically re-amplified and reshaped, negating much of the experimental

concerns related to attenuation and pulse deformation.

Next, to demonstrate the quantum capabilities of the device, we show how a two-photon state

can be manipulated by introducing time-dependent hopping phases α(t) on a 1D lattice while using

nonlinearity which is strong compared to the coupling constants U ≫ κ. Figure 6.3 depicts the

evolution of a two-photon state and a single-photon state under time-dependent hopping phases

α(t). The energetic gap between U ≫ κ means that while α(t) = 0, the two-photon state evolves

the same as the single-photon state, but with a slower timescale for the evolution.2 As α(t) is

changed, ∂α/∂t introduces an effective field, analogous to E⃗ = −∇V − ∂A⃗/∂t, which causes the

two-photon state to look like it is “lensing” back to its original configuration. This field is maximized

2The two-photon state in panel (a) undergoes slower evolution because the Hamiltonian has no terms which
can transport two photons simultaneously between lattice sites. Thus, evolution is only allowed via single-photon
transport through an intermediate state which is lower in energy by U . This intermediate state never develops a
sizable population because it is off-resonant from the initial and final states.
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Figure 6.3: Emulated evolution of (a) a two-photon state and (b) a single-photon state in a 1D
lattice as (c) time-dependent hopping phases are varied. The changing hopping phases introduce a
changing gauge potential which causes the two-photon state to experience an effective electric field.
The single-photon state is unaffected by this field.

at odd multiples of π/2, and by choosing suitable amplitude, duration, and periodicity of α(t), the

two-photon state can effectively be trapped in the center of the lattice. The single-photon state

is unaffected by the field, since we can perform a gauge transformation of the single-photon basis

states as â†n 7→ b̂†ne
inα(t) which eliminates the effect of α(t).

Finally, we demonstrate how the programmable nature of the device allows for emulation of

complex, high-dimensional topologies. Figure 6.4 shows the evolution of a tight-binding Hamiltonian

over a four-dimensional tesseract lattice emulated using the device. This demonstration uses a single

degree of freedom (time) to emulate four independent physical synthetic dimensions. A projection

of the non-planar graph defining the lattice is shown in Figure 6.4(a). The evolution of a two-photon

state over this tesseract is shown in Figure 6.4(b): photons are initially placed in time bins 0 and

5, and oscillations across the tesseract are visible, with the photons oscillating between sites 0↔ 10

and 5↔ 15. (This is the expected behavior, representing the four-dimensional analogue of a boson

oscillating between the corners of a 2×2 square lattice.) Two-photon correlation matrices are shown

at different points in time in the upper panels. The state is plotted at the end of each iteration of

the device; since photons have been swapped out of register time bin at the end of each iteration, it

is shown to be empty at all times.



CHAPTER 6. QUANTUM EMULATION 98

0 100 200 300 400 500

Iteration

0

4

8

12

RGTR

T
im

e
b
in

0

1

P
h
o
to

n
n
u
m

b
er,

co
rrela

tio
n

〈â
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Figure 6.4: Emulation of a tight-binding Hamiltonian over a four-dimensional tesseract. (a)
Projection of the tesseract graph which defines the lattice. (b) Evolution of a two-photon state
exhibiting oscillations between time bins 0↔ 10 and 5↔ 15. Parameters: κ = 0.01, α = µ = U = 0.

6.5 Error analysis

Let us now briefly discuss the feasibility of this proposed device in the presence of experimental

imperfections. The main limitations of the device are dispersion within the fiber loops3, optical

attenuation in the fiber4, phase shifter actuation speed and insertion losses, and limitations on the

nonlinear potential U .

For non-classically emulable cases with no nonlinearity (U = 0), single photon pulses must be

used, which cannot be re-amplified, so attenuation and insertion losses will constrain the maximum

lattice size which can be emulated with a given fidelity. If we take the tesseract graph with two

photons from Figure 6.4 as an example, using a pulse width of 2 cm and a time bin size of 1

ns, the allowable cycle loss L to emulate a single iteration with 90% fidelity is 1 − L = 0.998

or L = −.007dB / cycle. Ignoring MZI insertion losses, this corresponds to −2.23 dB/km fiber

attenuation, which is easily possible using commercially available fibers (with attenuation as low as

−0.17 dB/km).

The most difficult cases to emulate are non-classical with large values of U . Highly nonlinear

photonic crystal fibers filled with a high-density atomic gas can create nonlinearity up to U/ℏ ∼ 1

GHz in the few-photon regime. [249, 264] To compare this to the numerical values of κ, U used in the

simulations in this work, consider a time bin of size ∆t = nfiber∆x/c, where nfiber is the refractive

index. If there are N time bins, then the clock cycle time of the device is N∆t, so the frequency

units for a numerical value of κ = 1.0 are (2πN∆t)
−1

. For κ = 0.2 and nine time bins, as used in

the lattice for Figure 6.1, this corresponds to κ ≈ 0.007 GHz. The value of U is independent of cycle

time since it is distributed throughout the length of the fiber ring, and using current nonlinear fibers

3Dispersion is unlikely to have an important effect in emulation quality. Typical pulse parameters in a low-
dispersion fiber allow for distinguishability over thousands of kilometers of distance (see Appendix D.5).

4For classically emulable cases (where the total boson number is N = 1 or where the initial state is well-
approximated by a coherent state), single-photon pulses can be replaced by classical laser pulses with complex
amplitudes, which can be re-amplified as needed, so attenuation and insertion loss is much less of a concern.
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could be made several orders of magnitude larger than κ. Furthermore, recent improvements in the

demonstrated nonlinearity-to-loss ratios for integrated photonic platforms approaching 1.5% [273,

141] (albeit in χ(2) materials) show promise for achieving even higher values of U in the near future.

6.6 Conclusion

In this chapter we have presented a design for a programmable photonic device capable of emulating

a broad class of classical and quantum Hamiltonians in lattices with arbitrary topologies. The device

contains only a single actively controlled optical component – a phase-modulated MZI – and can be

reprogrammed to emulate a wide variety of systems, such as chiral states in a Hall ladder, synthetic

gauge potentials, and high-dimensional lattices. Our proposal opens new possibilities for studying

fundamental topological and many-body physics, and it is experimentally feasible to build for a

subset of these emulation scenarios.



Chapter 7

Conclusion and final remarks

The continual advancement of computing power has been the most important factor which has fueled

technological progress in the 21st century. As electronic computing systems approach fundamental

physical limits, photonics holds great promise for extending the development of computational ca-

pabilities. As we have shown in this thesis, light-based computing systems enable a wide range of

new technologies, including low power and ultra-fast machine learning, scalable room-temperature

quantum computation, and quantum emulation of exotic physics.

In Part I, we presented several new advancements in optical neural networks, which use lattices

of programmable interferometers to physically process optically encoded information. We designed

an electro-optic nonlinear activation for optical neural networks, and we subsequently demonstrated

this design using a custom fabricated silicon nitride chip. The activation function operates by using

a small portion of the input optical signal to modulate the optical signal intensity. This design

eliminates the requirement of having additional optical sources between each layer of the ONN, and

the activation function can be programmed or even trained to implement a variety of nonlinear re-

sponses. The proposed activation function and its experimental demonstration significantly improve

the performance of optical neural networks on a variety of machine learning tasks, paving the way

for much deeper ONNs.

Additionally, we proposed error-tolerant initialization routines and architectures for the pro-

grammable linear optical components which perform the bulk of the computation in optical neural

networks. We simulate the gradient-based optimization of random unitary matrices on universal

photonic devices composed of imperfect tunable interferometers. The locally-interacting nature of

the optical devices biases the optimization search space towards banded unitary matrices, limiting

convergence to random unitary matrices. To surpass this problem, we detailed a procedure for ini-

tializing the device by sampling from the distribution of random unitary matrices, which greatly

improved convergence speed. We also proposed a number of architectural improvements, such as

adding extra tunable beamsplitters or permuting waveguide layers, to which further improved the

100
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training speed and scalability of these devices.

In Part II, we present three novel schemes for quantum computation and emulation. We extended

the paradigm of programmable photonics explored in the first half of this thesis to the domain of

quantum information with a design for a device called a quantum programmable gate array, which

can be reprogrammed to prepare any quantum states without hardware modifications. This device

parameterizes arbitrary quantum circuits using single-qubit rotations, performed by Mach-Zehnder

interferometers, and controlled-σz gates, implemented using a deterministic two-photon scattering

process mediated by strongly-coupled quantum emitters. Like an optical neural network, the device

can be trained to implement desired operators, and we found that this gradient-based optimization

can automatically implement compact, high-fidelity approximations to many important quantum

circuits.

Next, we took the simplification of this design to its limits, designing a photonic quantum com-

puter which can deterministically perform any computation using only a single coherently controlled

atomic qubit. Borrowing methods from topological physics, our scheme endows a photonic quantum

state with a synthetic time dimension by using optical switches to modulate photon-atom couplings.

Quantum operations applied to the atomic qubit are teleported onto the photonic qubits via pro-

jective measurements, and arbitrary quantum circuits can be compiled into a sequence of these

teleported operators. Our design has a machine size which is independent of quantum circuit depth,

does not require single-photon detectors, operates deterministically, and is robust to experimental

imperfections.

Finally, we explored the capabilities of programmable photonics for use in quantum emulation

of exotic physics. We described a programmable photonic device capable of emulating the dynamics

of a broad class of Hamiltonians in lattices with arbitrary topologies and dimensions. We simulated

the physics of the device to observe a wide variety of physical phenomena, including chiral states in

a Hall ladder, effective gauge potentials, and oscillations in high-dimensional lattices. This design

opens new possibilities for studying topological and many-body physics in near-term experimental

platforms.

In conclusion, the manipulation of light to process information is a natural and incredibly power-

ful computational paradigm, and optical computing may be a critical avenue to explore to continue

to advance humanity’s computational capabilities.
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Appendix A

Matrix optimization on

programmable photonics

This appendix contains supplementary calculations for the results presented in Chapter 3.

A.1 Derivation of beamsplitter errors

Unitary matrices generated by lossless MZIs are prone to errors in beamsplitter fabrication. We

introduce the error ϵ to our expression derived in Equation 3.1, which is twice the displacement in

beamsplitter split ratio from 50 : 50. Beamsplitter gates with error ϵ are defined as Bϵ =

[
ρ iτ

iτ ρ

]

where ρ =
√

1+ϵ
2 , τ =

√
1−ϵ
2 are transmissivity and reflectivity amplitudes that result in slight

variations from a 50 : 50 beamsplitter. We use this error definition since it is a measurable quantity

in the chip; in fact, there are strategies to minimize ϵ directly [158]. The unitary matrix that we

implement in presence of beamsplitter errors becomes

Uϵ := RϕBϵ2RθBϵ1

tϵ := |Uϵ,12|2 = |Uϵ,21|2

rϵ := |Uϵ,11|2 = |Uϵ,22|2.
(A.1)
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If ϵ1 = ϵ2 = ϵ, which is a reasonable practical assumption for nearby fabricated structures, then

solving for tϵ in terms of t:

tϵ = 4|ρ|2|τ |2t

= 4t

(
1

2
+
ϵ

2

)(
1

2
− ϵ

2

)

= t(1− ϵ2).

(A.2)

Similarly, we can solve for rϵ:

rϵ = 1− tϵ = r + t · ϵ2. (A.3)

As we have discussed in this paper (and as we later show in Figure A.5), photonic errors ϵ

(standard deviation of 0.1) can affect the optimized phase shifts for unitary matrices. The above

constraints on rϵ and tϵ suggest that limited transmissivity is likely in the presence of fabrication

errors, which can inhibit progressive setup of unitary meshes [158, 37]. However, we will later

show through tensorflow simulation that in situ backpropagation updates can to some extent

address this issue using a more sophisticated experimental protocol involving phase conjugation and

interferometric measurements [102].

A.2 Derivation of the Haar measure

In this section, we outline a proof for the Haar measure of a unitary matrix in terms of the physical

parameters of a photonic mesh to supplement our discussion of Haar phase and the proof in Ref.

[212]. The Haar measure for U(N) can be defined in two physical basis representations: the mea-

surement basis represents measurements after each MZI and the transmissivity basis represents the

transmissivity of each MZI.

To make our explanation simpler, we will adopt the orthogonalization protocol used by Ref.

[202]. In this representation, we define the triangular mesh UT as

UT =

N−1∏

m=0

U (N−m)

U (m) =

m−1∏

n=1

UN−n(θ
(m)
N−n, ϕ

(m)
N−n) ·Dm(γN−m+1),

(A.4)

where Dm is a diagonal matrix representing a single mode phase shift at index N −m+ 1.

The N operators U (m) represent the diagonal layers of the triangular mesh and their role is to

project inputs from Hilbert space dimension from m to m − 1 recursively until we reach a single

mode phase shift in U (1) = D1(γN ). Our proof moves the same direction as Reck’s orthogonalization

procedure; starting from m = N , we progressively find the for each U (m) in decreasing order. For

each layer m, there are 2m− 1 complex hyperspherical coordinates (m− 1 “amplitude” coordinates
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Figure A.1: Triangular mesh for N = 8 using (a) 2N − 3 vertical layers ℓ showing the sensitivity
index αnℓ and (b) N diagonal layers m showing the transmissivity basis (tn in red) and the mea-
surement basis (xn in purple).

and m “phase” coordinates). The first column vector of U can be recovered by shining light (using

a unit power P = 1) through the top port of the layer (given by n = N −m+1) and measuring the

output fields in the triangular mesh generated by U (m), as shown in Figure A.1(b). As mentioned

in Refs. [202, 157], progressive optimization moves in the opposite direction; the desired output

fields are shined back into the device and the transmissivities t
(m)
n and phases ϕ

(m)
n for each layer m

(moving from N to 1) can be progressively tuned until all the power lies in the top input port for

that layer.

The measurement basis is an unbiased Haar measure (as shown in Ref. [212] using Gaussian

random vectors) and can be physically represented by the power xn measured at waveguides n ≤
m− 1 due to shining light through the top input port for that layer. Unlike the proof in Ref. [212],

we choose our constraint that the input power P = 1 rather than P ∈ R+, which introduces a
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normalization prefactor in our Haar measure by integration over all possible P .1 This allows us

to ignore the power in the final output port xN because energy conservation ensures we have the

constraint xN = 1−∑N−1
n=1 xn. Therefore, our simplified Cartesian basis for each m is (ignoring the

normalization prefactor):

dµ(U (m)) ∝ dγN−m

m−1∏

n=1

dxn

m∏

n=1

dϕn. (A.5)

Now we represent the Cartesian power quantities xn explicitly in terms of the component trans-

missivities, which we have defined already to be tn := cos2(θn/2). Using the same convention as

hyperspherical coordinates, we get the following recursive relation for xn as shown diagrammatically

by following the path of light from the top input port in Figure A.1(b):

xn = (1− tn)
n−1∏

k=1

tk. (A.6)

Intuitively, Equation A.6 implies that the power xn measured at port n is given by light that

is transmitted by the first n − 1 components along the path of light and then reflected by the nth

component. In other words, xn follows a geometric distribution.

We can use Equation A.6 to find the Jacobian J ∈ RN−1×N−1 relating the xn and the tn. We

find that we have a lower triangular matrix J with diagonal elements for n ≤ N − 1

Jnn =
∂xn
∂tn

= −
n−1∏

k=1

tk. (A.7)

We know J is lower triangular since for all n′ > n, Jnn′ = ∂xn

∂tn′
= 0 from Equation A.6.

Since the determinant of a lower triangular matrix is the same as the product of the diagonal,

we can directly evaluate the unbiased measure (off by a normalization constant) as

dµ(U (m)) ∝ dγN−m+1 detJ
m−1∏

n=1

dtn

m∏

n=1

dϕn

= dγN−m+1

m−1∏

n=1

Jnn
m−1∏

n=1

dtn

m∏

n=1

dϕn

∝ dγN−m+1

m−1∏

n=2

tm−n
n−1

m−1∏

n=1

dtn

m∏

n=1

dϕn

(A.8)

To get the total Haar measure, we multiply the volume elements for the orthogonal components

dµ(U (m)). We get from this procedure that the sensitivity index αnℓ = N − n for a triangular mesh

1This prefactor is exactly
∫∞
0 dPe−PPm−1 = (m− 1)!.
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in Equation A.8 (independent of ℓ), which can be seen using Figure A.1. We can express this Haar

measure in terms of Qαnℓ
(tnℓ), the probability distribution for the transmissivity, and Pαnℓ

(θnℓ/2),

the probability distribution for the phase shift corresponding to that same transmissivity, assuming

appropriate choice n, ℓ for the triangular mesh:

dµ(U) =

N∏

n=1

dµ(U (n))

=
∏

n

dγn
∏

n,ℓ

Qαnℓ
(tnℓ) dtnℓdϕnℓ

=
∏

n

dγn
∏

n,ℓ

Pαnℓ

(
θnℓ
2

)
dθnℓdϕnℓ

(A.9)

We can now normalize Equation A.8 using the normalization factor for P to get Qαnℓ
(tnℓ) and

then substitute tnℓ = cos2(θnℓ/2) to get our desired expression for Pαnℓ
(θnℓ/2):

Qαnℓ
(tnℓ) = αnℓt

αnℓ−1
nℓ

Pαnℓ

(
θnℓ
2

)
= αnℓ sin

(
θnℓ
2

)[
cos

(
θnℓ
2

)]2αnℓ−1

.
(A.10)

Finally, we can recover the Haar phase parameter ξnℓ ∈ [0, 1] (i.e. the cumulative density

function) in terms of either tnℓ or θnℓ:

ξnℓ =

[
cos

(
θnℓ
2

)]2αnℓ

= tαnℓ

nℓ . (A.11)

Finally, as explained in Ref. [212], we can use the Clements decomposition [50] to find another

labelling for αnℓ in a rectangular mesh that gives probability distributions and Haar phases in the

same form as Equations A.10 and A.11 respectively.

A.3 Unitary matrix bandsizes

We would like to quantify the bandedness of matrices implemented by the meshes with randomly

initialized phases. We define the η-bandsize as the minimum number of matrix elements whose

absolute value squared sums to (1 − η)N . Note that our η-bandsize measurement is agnostic of

the ordering of the inputs and outputs, and is therefore agnostic to any permutations that may

be applied at the end of the decomposition. In photonics terms, if η = 0.001, let ri measure the

fraction of output waveguides over which 99.9% of the power is distributed when light is input into

waveguide i. The η-bandsize is ri averaged over all i. Sampling from our matrix distributions, we

observe the relationship between the bandsize (given η = 0.001) and the dimension N in Figure A.2.
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Figure A.2: Given η = 0.001, we compare bandsizes for rectangular (U ∼ UR(N,N)), permuting
rectangular (U ∼ UPR(N)), and redundant meshes (U ∼ UR(N, 2N)). Permuting rectangular meshes
match the bandsize of Haar random matrices.

A.4 Fabrication imperfections in a redundant mesh

When photonic errors are added to the redundant mesh, specifically the 256-layer mesh, we observe

a slight decrease in optimization performance in Figure A.3, similar to what we observed for the

rectangular and permuting rectangular meshes in Figure 3.6. This decrease in performance, however,

is less concerning considering that we still achieve a mean square error of around 10−5, suggesting

that RRM might be more robust to photonic errors even during on-chip optimization.
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Figure A.3: A comparison of test mean square error for N = 128 between redundant rectangular
meshes with error ϵ for 256-layer mesh for: 20000 iterations, Adam update, learning rate of 0.0025,
batch size of 256, simulated in tensorflow.
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A.5 Optical singular value decomposition simulations

We compare the simulated performance of such rectangular and permuting rectangular architectures

in the singular value decomposition (SVD) configuration discussed in Refs. [157, 225]. Such archi-

tectures would allow one to perform arbitary linear operations with a relatively small footprint, and

may have some other useful dimensionality-reduction properties in machine learning contexts.

In SVD, we represent complex matrix Â ∈ CM × CN as Â = Û Σ̂V̂ †, where Σ̂ is a diagonal

matrix implemented on-chip with min(M,N) single-mode gain or attenuating elements and Û , V̂ †

are unitary matrices implemented in a photonic mesh. While Â has 2MN free parameters, any

global optimization for a photonic SVD implementation using rectangular meshes can have at most

D = N(N − 1) +M(M − 1) + 2min(N,M) ≥ 2MN free parameters, with equality when M = N .

In the triangular architecture discussed in Ref. [157], the total complexity of parameters can be

exactly D = 2MN when setting a subset of the beamsplitters to bar state. In the case where the

total number of singular values for Â is S < min(M,N), we get D = 2S(M + N − S) tunable

elements. Additionally, there is an “effective redundancy” in that some vectors in U, V are more

important than others due to the singular values.

In our simulations, we investigate an SVD architecture for A = UΣV † for A ∈ CM×CN composed

of the unitaries U ∈ CM × CM and V ∈ CN × CN . Note that such an architecture is redundant

when M ̸= N , so we focus on the simple case of M = N = 64.

We define our train and test cost functions analogous to the unitary mean-squared error cost

functions as

Ltest =
N∥Â−A∥2F

2∥A∥2F
Ltrain = ∥ÂX −AX∥2F ,

(A.12)

where Â = Û Σ̂V̂ † is defined in Section 3.5.

We randomly generate A ∈ CN × CM by expressing Ajk = a + ib, where a, b ∼ N (0, 1). The

synthetic training batches of unit-norm complex vectors are represented by X ∈ CN×2N .

Assuming a procedure similar to [102] can be used in presence of gains and optimization, the

permuting rectangular mesh converges slightly faster but is significantly more resilient to uniform

random phase initialization compared to the rectangular mesh as shown in Figure A.4. Both opti-

mizations are minimally affected by beamsplitter error, unlike what is seen in the unitary optimiza-

tion case.

A.6 Periodic parameters

We comment on our reported values of θnℓ in the checkerboard plots in Figures 3.3 (of the main text)

and A.5. Since our simulated optimization does not have the explicit constraint that θnℓ ∈ [0, π),

we report the “absolute θnℓ,” where we map all values of θnℓ/2 to some value in [0, π/2]. This
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Figure A.4: A comparison of test mean square error for N = 64 between SVD devices using
rectangular (SVD-RM) and permuting rectangular (SVD-PRM) meshes for: 20000 iterations, Adam
update, learning rate of 0.005, batch size of 128, simulated in tensorflow. Unless otherwise noted,
the default setting is Haar random initialized θnℓ with σϵ = 0.

corresponds to the transformation (assuming θnℓ is originally between 0 and 2π):

θnℓ →




θnℓ θnℓ ≤ π
2π − θnℓ θnℓ > π

. (A.13)

Note a similar treatment as Equation A.13 can be used to represent the Haar phase ξ ∈ [0, 1] in

terms of a “periodic” Haar phase ξ̃ ∈ [0, 2] with period 2:

ξ(ξ̃) =




ξ̃ ξ̃ ≤ 1

2− ξ̃ ξ̃ > 1
. (A.14)

Note both ξ̃ and θ̃ can therefore be made to vary continuously from (−∞,∞) with ξ̃ having a

period of 2 and θ̃ having a period of 2π. We map these periodic parameters to their half-periods

according to Equations A.13 and A.14 based on symmetry arguments.
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Figure A.5: Comparison of learned matrix errors and learned θnℓ weights after 20000 iterations
for the Adam update at learning rate 0.0025 and batch size 256 for the simple unitary network. We
consider two meshes: (1) rectangular mesh (RM), and (2) permuting rectangular mesh (PRM). We
consider three conditions for each mesh: (1) ideal (with Haar random unitary initialization), (2)
photonic beamsplitter error displacement ϵ ∼ N (0, 0.01), (3) random initialization.
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A.7 Training simulation comparisons

In Figure A.5, we compare the performance for our unitary network experiment over our aforemen-

tioned conditions in Section 3.5. For each plot, we also have an associated video, showing how the

parameter distributions, estimates, and errors vary during the course of the optimization, available

online.2

There are several takeaways from these plots. First, the reflectivity of the MZIs near the center

of the mesh are much smaller in the optimized rectangular meshes than in the permuting rectangular

meshes. Second, the gradient descent algorithm has a hard time finding the regime of Haar random

matrices after a uniform random phase initialization. The values of θnℓ are much larger than they

need to be even 100 iterations into the optimization. This is likely evidence of a “vanishing gradient”

problem when the mesh is not Haar-initialized. Finally, an important observation for the meshes

with beamsplitter error is that the θnℓ/2 distribution shifts slightly towards 0 in the rectangular

mesh. This is a consequence of the limits in reflectivity and transmissivity in each MZI due to

beamsplitter fabrication error as discussed in Section 3.2.

Our simulated permuting rectangular implementation uses the same layer definitions as defined

in Equation 3.11 except the Pk with the most layers are in the center of the mesh, and the Pk with

the fewest layers are near the inputs and outputs of the mesh. In Figure 3.4, P2 and P3 would be

switched, and for N = 128, the order is [P2, P4, P6, P5, P3, P1]. We find this configuration to be the

best permuting rectangular mesh so far in our experiments, although the architecture in Equation

3.11 gives improvements over the rectangular mesh.

A.8 An equivalent definition for αnℓ

Let αnℓ be the sensitivity index for an MZI (“node”) at (waveguide, layer) coordinates (n, ℓ) in a

local decomposition for an N ×N unitary operator. We define the “row coordinate” or waveguide

index n from the MZI’s operator Un coupling waveguides n and n + 1, and we define the “column

coordinate” or layer index m to be ℓ = k+1, where k is the maximum number of operators applied

to a reachable input (This is equivalent to the vertical layers definition in Figure 3.1.). The reachable

inputs Inℓ are the subset of input modes affecting the immediate inputs of the MZI at (n, ℓ), and

the reachable outputs Onℓ are the subset of output modes affected by the immediate outputs of the

MZI.

Following the definitions in Ref. [212], in the triangular scheme, αnℓ := N − n, and in the

rectangular scheme, αnℓ := d (n, ℓ) + 1− snℓ[ℓ] where d(n, ℓ) is the number of nodes on the diagonal

(measured along paths of constant n + ℓ) containing a rotation parameterized by θnℓ, and snℓ is

a sequence of decreasing odd integers d(n, ℓ) ≥ kodd ≥ 1, followed by increasing even integers

2See https://av.tib.eu/series/520/photonic+optimization.

https://av.tib.eu/series/520/photonic+optimization
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2 ≤ keven ≤ d(n, ℓ), as defined in [212]. We prove below that for both the triangular and rectangular

meshes, αnℓ = |Inℓ|+ |Onℓ| −N − 1.

Lemma 1. In the triangular mesh, αnℓ = |Inℓ|+ |Onℓ| −N − 1.

Proof. In the triangular mesh (shown for N = 8 in Figure A.1) αnℓ := N − n, so we wish to show

that N − n = |Inℓ|+ |Onℓ| −N − 1, or:

2N + 1 = |Inℓ|+ |Onℓ|+ n. (A.15)

Suppose Equation A.15 holds for some arbitrary n′, ℓ′ in the mesh, such that 2N + 1 = |In′ℓ′ |+
|On′ℓ′ | + n′. First, induct on n: if we take n = n′ + 2 and ℓ = ℓ′, then |Inℓ| = |In′ℓ′ | − 1 and

|Onℓ| = |On′ℓ′ | − 1. Next, induct on ℓ: if we take n = n′ and ℓ = ℓ′ + 2, then |Inℓ| = |In′ℓ′ |+ 1 and

|Onℓ| = |On′ℓ′ | − 1. In both cases, Equation A.15 holds.

Traversals by 2 along n or ℓ from a starting node can reach all nodes with the same parity of

n and ℓ, so we need two base cases. Consider the apex node at n = 1, ℓ = N − 1 and one of its

neighbors at n = 2, ℓ = N . The former has |Inℓ| = |Onℓ| = N and the latter has |Inℓ| = N and

|Onℓ| = N − 1. In both cases, Equation A.15 is satisfied, so the lemma holds by induction.

Lemma 2. In the rectangular mesh, αnℓ = |Inℓ|+ |Onℓ| −N − 1.

Proof. In the rectangular mesh, αnℓ := d (n, ℓ)+1−snℓ[ℓ], as defined in Ref. [212]. Define orthogonal

axes x and y on the lattice such that for a node at (n, ℓ), traveling in the +x direction gives the

neighboring node at (n+ 1, ℓ+ 1) and traveling in the +y direction gives the neighboring node at

(n− 1, ℓ+ 1), as depicted in Figure A.6. For even {odd} N , let the node at (n, ℓ) = (1, 1) have x = 1

and the node at (n, ℓ) = (N − 1, 1{2}) have y = 1. Then there is a one-to-one mapping such that

(x, y) =
(
n+ℓ
2 , ℓ−n2 + ⌊N2 ⌋

)
, as shown in Figure A.6, and it suffices to prove the lemma by induction

in this diagonal basis.

Since d (n, ℓ) is defined to be the length of a diagonal along paths of constant n+ ℓ, it depends

only on x, so we rewrite d (n, ℓ) 7→ d(x) explicitly:

d(x) =




2x− 1 x ≤ ⌊N2 ⌋
2(N − x) x > ⌊N2 ⌋

. (A.16)

Similarly, since snℓ[ℓ] is enumerated along a diagonal, it depends only on y, and we convert

snℓ[ℓ]→ sx[y] from the sequence definition of Ref. [212] to an explicit lattice form:

sx[y] =




2
(
⌊N2 ⌋ − y

)
+ 1 y ≤ ⌊N2 ⌋

2
(
y − ⌊N2 ⌋

)
y > ⌊N2 ⌋

. (A.17)
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Figure A.6: Rectangular decomposition for even (N = 8) and odd (N = 7) meshes, showing the
diagonal x, y basis. Values for αnℓ are shown in red above each MZI, with values for sx[y] shown in
blue below. The critical boundaries of x, y = ⌊N2 ⌋ separating the different quadrants are drawn in
green. (Boundaries are offset for visual clarity.)

In this diagonal basis, we want to show that

d(x) + 1− sx[y] = |Ixy|+ |Oxy| −N − 1. (A.18)

There are two boundaries at x, y = ⌊N2 ⌋ which separate four quadrants that must be considered,

depicted by gray lines in Figure A.6. We will induct on x and y within each quadrant, then induct

on x or y across each of the two boundaries.

Suppose that Equation A.18 holds for some arbitrary x′y′ in the mesh, such that d (x′) + 1 −
sx′ [y′] = |Ix′y′ |+ |Ox′y′ | −N − 1. First, we induct on x and y within each quadrant; the results are

tabulated in Table A.1. In every case, d(x)−sx[y]−|Ixy|− |Oxy| = d (n, ℓ)−sx′ [y′]−|Ix′y′ |− |Ox′y′ |,
so Equation A.18 remains satisfied.

Quadrant Induction d(x) = · · · sx [y] = · · · |Ixy| = · · · |Oxy| = · · ·

x′ ≤ ⌊N2 ⌋, y′ ≤ ⌊N2 ⌋ x = x′ − 1 d (n, ℓ)− 2 sx′ [y′] |Ix′y′ | − 2 |Ox′y′ |
y = y′ − 1 d (n, ℓ) sx′ [y′] + 2 |Ix′y′ | − 2 |Ox′y′ |

x′ ≤ ⌊N2 ⌋, y′ > ⌊N2 ⌋ x = x′ − 1 d (n, ℓ)− 2 sx′ [y′] |Ix′y′ | − 2 |Ox′y′ |
y = y′ + 1 d (n, ℓ) sx′ [y′] + 2 |Ix′y′ | |Ox′y′ | − 2

x′ > ⌊N2 ⌋, y′ ≤ ⌊N2 ⌋ x = x′ + 1 d (n, ℓ)− 2 sx′ [y′] |Ix′y′ | |Ox′y′ | − 2

y = y′ − 1 d (n, ℓ) sx′ [y′] + 2 |Ix′y′ | − 2 |Ox′y′ |
x′ > ⌊N2 ⌋, y′ > ⌊N2 ⌋ x = x′ + 1 d (n, ℓ)− 2 sx′ [y′] |Ix′y′ | |Ox′y′ | − 2

y = y′ + 1 d (n, ℓ) sx′ [y′] + 2 |Ix′y′ | |Ox′y′ | − 2

Table A.1: Induction on x and y within each of the quadrants in the mesh.

Next, we induct across the x, y = ⌊N2 ⌋ boundaries, shown in Table A.2. Again, in every case,
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d(x)− sx[y]− |Ixy| − |Oxy| = d (n, ℓ)− sx′ [y′]− |Ix′y′ | − |Ox′y′ |, satisfying Equation A.18.

x′ y′ Induction d(x) = · · · sx [y] = · · · |Ixy| = · · · |Oxy| = · · ·

x′ = ⌊N2 ⌋ any x = x′ + 1 d (n, ℓ)− {+}1 sx′ [y′] |Ix′y′ |+ 0{1} |Ox′y′ | − 1{0}
any y′ = ⌊N2 ⌋ y = y′ + 1 d (n, ℓ) sx′ [y′] + 1 |Ix′y′ | |Ox′y′ | − 1

Table A.2: Induction on x or y across each of the borders of x, y = ⌊N2 ⌋.

Finally, note that the base case of the top left MZI at (n, ℓ) = (1, 1), (x, y) =
(
1, ⌊N2 ⌋

)
holds, with

d(x)+ 1− sx[y] = 1 = 2+N −N − 1 = |Ixy|+ |Oxy| −N − 1. This completes the proof in the (x, y)

basis, and since there is a one-to-one mapping between (x, y)↔ (n, ℓ), αnℓ = |Inℓ|+ |Onℓ| −N − 1

holds by induction.



Appendix B

Quantum programmable gate

arrays

This appendix contains more detailed supplementary calculations for the results presented in Chapter

4. Section B.1 derives effective transfer operations for photons with arbitrary spectra, Section B.2

contains a detailed derivation for the reflection coefficients of the strongly-coupled quantum emitter,

and Section B.3 contains phase shifter parameters to implement a variety of common single-qubit

quantum gates, as well as embeddings of multi-qubit gates within the QPGA architecture.

B.1 Phase-modulated interference for photons with arbitrary

spectra

Consider a Mach-Zehnder interferometer with four phase shifters in the arrangement presented in

Figure 4.1c. Let the operators â†1(ω), â
†
2(ω) represent creation operators for the top and bottom

waveguides, respectively, acting on a single frequency mode ω. Consider an input state to the MZI

representing a single logical qubit in the state α |0L⟩+ β |1L⟩:

|ψin⟩ =
∫
dω ϕ(ω)

(
αâ†1(ω) + βâ†2(ω)

)
|∅⟩ . (B.1)

The phase shifters in the MZI act by imparting a time delay τ on the creation operators, mapping

â†(ω) 7→ â†(ω)eiωτ . (Here we make the approximation that the phase shifter imparts an equal time

delay across the range of frequencies of the photon, e.g. has a constant refractive index.) Let

{τζ , τξ, τθ, τϕ} ≡ {ζ, ξ, θ, ϕ}/ω0 denote the effective time delays imparted by the four phase shifters,

where ω0 denotes the 4LS resonance frequency ω in the main text. The idealized action of the MZI

on photons of zero spectral width described in Eq. 4.1 is RαβHR
θHRϕ. In the case of finite spectral

116
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width, the transformation maps:

[
â†1(ω)

â†2(ω)

]
← 1

2

[
ei(τζ+τϕ)ω

(
eiτθω + 1

)
ei(τξ+τϕ)ω

(
eiτθω − 1

)

eiτζω
(
eiτθω − 1

)
eiτξω

(
eiτθω + 1

)
] [

â†1(ω)

â†2(ω)

]
. (B.2)

Thus, the output state of the MZI is:

|ψout⟩ = 1

2

∫
dω ϕ(ω)

[(
αei(τζ+τϕ)ω

(
eiτθω + 1

)
+ βei(τξ+τϕ)ω

(
eiτθω − 1

))
â†1(ω)

+
(
αeiτζω

(
eiτθω − 1

)
+ βeiτξω

(
eiτθω + 1

))
â†2(ω)

]
|∅⟩ . (B.3)

Define coefficients C0(ω) ≡ 1
2 (αe

i(τζ+τϕ)ω
(
eiτθω + 1

)
+ βei(τξ+τϕ)ω

(
eiτθω − 1

)
) and C1(ω) ≡

1
2 (αe

iτζω
(
eiτθω − 1

)
+βeiτξω

(
eiτθω + 1

)
). Then the output state is |ψout⟩ =

∫
dω ϕ(ω)(C0(ω)â

†
1(ω)+

C1(ω)â
†
2(ω)) |∅⟩. Define projection operators P̂0, P̂1 which map physical wavefunctions to logical

state vectors:

P̂0 =

∫
dω |0L⟩ ⟨∅| â1(ω) (B.4)

P̂1 =

∫
dω |1L⟩ ⟨∅| â2(ω) (B.5)

To obtain the fidelity of the physical output state against the target logical output state |ψtarg⟩ =
CL0 |0⟩ + CL1 |1⟩, we evaluate the inner product between the states by expanding in terms of the

complete basis 1 = P̂0 + P̂1:

F = |⟨ψtarg|ψout⟩|2

=

∣∣∣∣
(
CL∗0 ⟨0L|+ CL∗1 ⟨1L|

) ∫
dω ϕ(ω)

(
C0(ω)â

†
1(ω) + C1(ω)â

†
2(ω)

)
|∅⟩
∣∣∣∣
2

=

∣∣∣∣
(
CL∗0 ⟨0L|+ CL∗1 ⟨1L|

) (
P̂0 + P̂1

)∫
dω ϕ(ω)

(
C0(ω)â

†
1(ω) + C1(ω)â

†
2(ω)

)
|∅⟩
∣∣∣∣
2

=

∣∣∣∣
∫
dω ϕ(ω)

(
CL∗0 C0(ω) + CL∗1 C1(ω)

)∣∣∣∣
2

.

(B.6)

The fidelity of the output state will depend on the phase shifter values. We numerically simulate

the output wavefunctions for a large sample of ζ, ξ, θ, ϕ across a range of spectral widths and plot

the results in Figure B.1.
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Figure B.1: Infidelities of the output state of a Mach-Zehnder interferometer for a range of spectral
distributions. We assume an input wavefunction of |ψin⟩ =

∫
dω gδt(ω)

1√
2
(â†1(ω)+ â

†
2(ω)) |∅⟩, where

gσ(ω) is a Gaussian with a spectral width of σ = δω
ω0

and a pulse length of δt = 1
2δω periods of

the central frequency ω0. We compute the output wavefunction for an ensemble of 1000 values of
ζ, ξ, θ, ϕ sampled uniformly from [0, 2π) across 250 values of σ and plot the maximum, minimum,
and average infidelity (defined as 1−F) for each case, depicted as the bottom, middle, and top lines,
respectively.

B.2 Derivation of reflection coefficients

In this section, we derive the reflection coefficients presented in Section 4.2.2, using a similar treat-

ment of the problem as in Ref. [274]. To simplify the derivation, we replace the Hamiltonian in Eq.

4.6 with an ad-hoc Hamiltonian:

Had-hoc =
ℏ
i

∫
dx

[
b̂†R(x)

∂

∂x
b̂R(x)− b̂†L(x)

∂

∂x
b̂L(x)

]
+ ℏ

4∑

n=2

(
Ωn −

iΓ′

2

)
|n⟩⟨n|

+ ℏ
∫
dx
√
Γ/2 δ(x)

[(
b̂†R(x) + b̂†L(x)

)
(|1⟩⟨2|+ |3⟩⟨2|+ |3⟩⟨4|) + H.c.

]
, (B.7)

where we have also set vg = vr = 1. With this approach, the Hilbert space contains only waveguide

and atom states, without the environmental reservoir. This ad-hoc approach is known to produce

correct scattering matrices for single-photon (and temporally-separated multi-photon) interactions,

and is thus suitable for our purposes, but it should be noted that the direct substitution of Ω →
Ω − iΓ′/2 in the Hamiltonian rather than in the scattering matrix will yield incorrect results for

temporally overlapping two-photon scattering. [207]
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Step 1. Consider the dynamics of a single quantum emitter in the device, from sites (4a) to (6a)

in Fig. 4.1c. Photon A at frequency ω = Ω12 = Ω34 is incident on the atom, which is initialized in

state |1⟩. The stationary state of the system is:

|ψ1⟩ =
∫
dx
[
ϕ1R(x)b̂

†
R(x) + ϕ1L(x)b̂

†
L(x)

]
|∅⟩ ⊗ |1⟩+ e2 |∅⟩ ⊗ |2⟩

+

∫
dx
[
ϕ3R(x)b̂

†
R(x) + ϕ3L(x)b̂

†
L(x)

]
|∅⟩ ⊗ |3⟩ , (B.8)

where the amplitude of the ϕ wavepackets correspond to the component of the photon which is in

the spatial mode being considered. [221, 274] Using the Schrodinger equation H |ψ1⟩ = ℏω |ψ1⟩,
where H is given in Eq. B.7, and defining a coupling constant V ≡

√
vgΓ/2 we obtain:

(
−i d
dx
− ω

)
ϕ1R(x) + V δ(x)e2 = 0, (B.9a)

(
+i

d

dx
− ω

)
ϕ1L(x) + V δ(x)e2 = 0, (B.9b)

(
−i d
dx
− ω′

)
ϕ3R(x) + V δ(x)e2 = 0, (B.9c)

(
+i

d

dx
− ω′

)
ϕ3L(x) + V δ(x)e2 = 0, (B.9d)

− iΓ
′

2
e2 + V (ϕ1R(0) + ϕ1L(0) + ϕ3R(0) + ϕ3L(0)) = 0. (B.9e)

Defining k ≡ ω/c and k′ ≡ ω′/c = Ω32/c, and following the treatment in Ref. [221] and [274], we

assume a solution ansatz of:

ϕ1R(x) = e+ikx (θ(−x) + β1Rθ(x)) , (B.10a)

ϕ1L(x) = e−ikx (α1Lθ(−x) + β1Lθ(x)) , (B.10b)

ϕ3L(x) = e−ik
′x (β3Lθ(−x)) , (B.10c)

ϕ3R(x) = e+ik
′x (β3Lθ(−x) + α3Rθ(x)) , (B.10d)

where θ is the Heaviside function with θ(0) ≡ 1
2 . Here, β coefficients describe parts of the wavefunc-

tion between the relevant reflector and the 4LS, while α coefficients describe parts which are outside

the 4LS (the input/output waveguide for the ω photon and the delay line for the ω′ photon). The

reversal of direction of x for ϕ1 and ϕ3 is due to the opposite orientation of the reflectors for ω and

ω′, respectively. The reflective boundary conditions at x = ±a means that:

ϕ1R(a) + ϕ1L(a) = 0 = ϕ3L(−a) + ϕ3R(−a). (B.11)
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Using this and substituting equations B.10 into B.9 gives us the solution:

r11 = α1L = e2iωa
iΓ′

2 − iΓ
2

(
e2iω

′a − e−2iωa
)

− iΓ′

2 + iΓ
2 (e2iω′a + e2iωa − 2)

, (B.12)

r13 = α3R =

iΓ
2

(
e2iωa − 1

) (
e2iω

′a − 1
)

− iΓ′

2 + iΓ
2 (e2iω′a + e2iωa − 2)

. (B.13)

Step 2. We now send in the second photon B, also of frequency ω, which will scatter off of

the |1⟩ component of the 4LS state in the same manner as the first photon. We assume that the

temporal separation of photons A and B is much greater than the decay timescale of the excited

|2⟩ , |4⟩ states, and since ω is off resonance from the |3⟩ ↔ |2⟩ transition at ω′, then B will interact

with the |3⟩ ↔ |4⟩ transition only. The single photon scattering eigenstate for the |3⟩ component of

the 4LS state then takes the form:

|ψ2⟩ =
∫
dx
[
ϕ3R(x)b̂

†
R(x) + ϕ3L(x)b̂

†
L(x)

]
|∅⟩ ⊗ |3⟩+ e4 |∅⟩ ⊗ |4⟩ . (B.14)

As before, applying the ad-hoc Hamiltonian to H |ψ2⟩ = ℏω |ψ2⟩, we obtain equations of motion:

(
−i d
dx
− ω

)
ϕ3R(x) + V δ(x)e4 = 0, (B.15a)

(
+i

d

dx
− ω

)
ϕ3L(x) + V δ(x)e4 = 0, (B.15b)

− iΓ
′

2
e4 + V (ϕ3R(0) + ϕ3L(0)) = 0. (B.15c)

Assuming a solution ansatz of

ϕ3R(x) = e+ikx (θ(−x) + β3Rθ(x)) , (B.16a)

ϕ3L(x) = e−ikx (α3Lθ(−x) + β3Lθ(x)) , (B.16b)

where k is defined as before, and imposing reflective boundary conditions that ϕ3R(a)+ϕ3L(a) = 0,

we obtain the reflected amplitude to be:

R3 = α3L =
iΓ′

2 e
2iωa + iΓ

2

(
1− e2iωa

)

− iΓ′

2 − iΓ
2 (1− e2iωa) . (B.17)

Step 3. The A′ photon of frequency ω′ has traveled down the delay line and back and is incident

on the 4LS, which is in some superposition of |1⟩ and |3⟩. The photon is far off-resonance from the

|1⟩ ↔ |2⟩ transition, so will only interact with the |3⟩ ↔ |2⟩ transition. Using the same approach as

before, we obtain reflection amplitudes which are analogous to Eqs. B.12 and B.13, except with ω
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and ω′ switched:

r33 = e2iω
′a

iΓ′

2 − iΓ
2

(
e2iωa − e−2iω′a

)

− iΓ′

2 + iΓ
2 (e2iωa + e2iω′a − 2)

, (B.18)

r31 =

iΓ
2

(
e2iω

′a − 1
) (
e2iωa − 1

)

− iΓ′

2 + iΓ
2 (e2iωa + e2iω′a − 2)

. (B.19)

Step 4. The B′ photon of frequency ω′ has returned to the 4LS, which is in some different

superposition of |1⟩ and |3⟩. As before, the photon only interacts with the |3⟩ ↔ |2⟩ transition, and
has identical reflection coefficients as step 3.
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B.3 Implementations of common quantum gates

Operator Matrix representation ζ ξ θ ϕ

Identity 1 =
(
1 0
0 1

)
0 0 0 0

Hadamard H = 1√
2

(
1 1
1 −1

)
5π
4

3π
4

π
2

π
2

Pauli-X σx =
(
0 1
1 0

)
π π π 0

Pauli-Y σy =
(
0 −i
i 0

)
3π
2

π
2 π 0

Pauli-Z σz =
(
1 0
0 −1

)
0 π 0 0

Rotation-X Rx(θ
′) = cos θ

′

2 1− i sin θ′

2 σx −2θ′ −2θ′ θ′ 0

Rotation-Y Ry(θ
′) = cos θ

′

2 1− i sin θ′

2 σx −2θ′ − π
2 −2θ′ θ′ π

2

Rotation-Z Rz(θ
′) = cos θ

′

2 1− i sin θ′

2 σz − θ′2 θ′

2 0 0

Phase shift Rϕ′ =
(
1 0

0 eiϕ

)
0 ϕ′ 0 0

Table B.1: A table of phase shifter parameters which implement various common single-qubit gates
on the phase-modulated MZIs depicted in Figure 4.1c.
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Operator Symbol Decomposition Cell depth

Identity
I • I • I

I • I • I
0, 2, 4, · · ·

Controlled-NOT
• I • I

H • H
1

Controlled-phase
•

Rϕ

Rϕ/2 • I • I

Rz(ϕ)H • HRz(−ϕ2 )H • HRz(
ϕ
2 )

2

Controlled-U1
•

U

Rϕ • I • I

Rz(α)Ry(
θ
2 )H • HRy(− θ2 )Rz(−

α+β
2 )H • HRz(β−α2 )

2

SWAP ×
×

H • H • H •

H • H • H •
3

Table B.2: Construction of common multi-qubit gates by embedding single-qubit operations in a
lattice of cσz gates. Because the phase-modulated MZIs can implement any single-qubit operator,
gate decompositions may be terminated with either with cσz gates or with single-qubit gates, as the
first layer of single-qubit operators of subsequent gates can implicitly include the final single-qubit
operators of the previous logical gate. All quantum circuit diagrams in this paper were typeset using
the QCircuit LATEXpackage. [67]



Appendix C

Quantum computing in a synthetic

time dimension

In this appendix, we give more detailed presentations of the results described in Chapter 5. In

Section C.1 we present a derivation of the gate teleportation mechanism; in Section C.2 we derive a

method to construct arbitrary single-qubit operations from the teleported gates; in Section C.3 we

construct a photon-atom SWAP operation from scattering sequences and measurement; in Section

C.4 we describe constructions for a two-photon cσz gate; in Section C.5 we give more detail of the

circuit compilation process and provide an example of a compiled instruction sequence to implement

a quantum Fourier transform on our proposed device; and in Section C.7 we discuss in greater detail

the imperfection analysis described Section 5.3.

C.1 Derivation of gate teleportation mechanism

Consider a photon which is circulating in the storage ring in the storage ring in a state |ψin⟩ =
α |⟳⟩ + β |⟲⟩, where |⟳⟩ and |⟲⟩ denote the two counter-circulating states. Referring to Figure

C.1, define bosonic operators â†⟳(t), â
†
⟲(t) which create at time t a clockwise- or counterclockwise-

propagating photon in the ring at the points P1, P2, respectively, just before the switches. The

physical state of the photon in the ring can be written as

|ψin⟩ =
∫
dt ϕ(t)

[
α â†⟳(t) + β â†⟲(t)

]
|∅⟩ , (C.1)

where |∅⟩ denotes the vacuum state and ϕ(t) describes the pulse envelope. Here we assume that the

photon was originally injected in the |⟳⟩ state as shown in Figure C.1 and has undergone at most

a small number of scattering interactions with the atom-cavity system, such that the clockwise and

124
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(a)

(c)

(b)

Figure C.1: An annotated figure depicting the architecture described in the main text and the
correspondence of physical and logical circuit elements. (a) The physical design of the device,
with annotations indicating quantum operations implemented by physical circuit elements. (b) The
energy structure of the atom: Ω1 is resonant with the cavity mode and photon carrier frequency,
while Ω0 is far-detuned. (c) Gate diagram of the quantum circuit applied in a single pass of a
photonic qubit through the scattering unit. The top rail denotes the state of the photonic qubit and
the bottom rail denotes the atomic qubit. After the photon returns to the storage ring, Rx(−θ) is
applied to the atomic qubit and a projective measurement of the atomic state is performed. The
final output state |ψout⟩ is Zπ

4
σz (−σy)m⊕1

Ry (θ)Zπ
4
|ψin⟩, as described in Eq. 2 of the main text.

counterclockwise pulses have not independently deformed significantly and can be described by a

single envelope.

We also define bosonic operators b̂†0,d(t), b̂
†
1,d(t) which respectively create a photon in the top

or bottom waveguides at points P1, P2 at time t propagating with direction d ∈ {L,R}. As the

photon is injected by the switches from the ring into the waveguides, the fixed π/4 phase shifter

applies (up to a global phase) a rotation Zπ
4
≡ Rz

(
π
4

)
=

(
e−iπ/8 0

0 eiπ/8

)
to the photon state, and

the beamsplitter applies the operation B = 1√
2

(
1 i

i 1

)
. Finally, let operators ĉ†0,d(t), ĉ

†
1,d(t) with

d ∈ {L,R} create a photon at time t in the top or bottom waveguides just before the mirror or

cavity at points P3 and P4.

The round trip distance from points P1, P2 to P3, P4 and back is equal to the ring circumference

L = n∆t, where the speed of light in the waveguides is set to unity and where n is the number of

time bins. This matching path length ensures that a photon which leaves the ring to scatter against

the atom will return to its original time bin. Let time t0 denote the point at which the clockwise

and counterclockwise components of the photon in the ring pass their respective switches and may

be injected into the scattering unit. When the switches are set to the open state, we can relate the
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â†, b̂†, ĉ† operators on the outgoing pass of the photon with:

[
b̂†0,R(t0)

b̂†1,R(t0)

]
=

[
â†⟳(t)

â†⟲(t)

]
,

[
ĉ†0,R

(
t0 +

n∆t
2

)

ĉ†1,R
(
t0 +

n∆t
2

)
]
= BZπ

4

[
b̂†0,R(t)

b̂†1,R(t)

]
. (C.2)

The ĉ†1,R component of the photon interacts at time t1 = t0 +
n∆t
2 with the |g1⟩ component of

the atomic state that is resonant with the photon frequency, applying the unitary transformation

onto the joint photon-atom state cσz = eiπ|1⟩⟨1|⊗|g1⟩⟨g1| = exp
(
iπ ĉ†1,R |∅⟩ ⟨∅| ĉ1,R ⊗ |g1⟩⟨g1|

)
. Thus,

we can relate the operators before and after reflection/scattering as:

([
ĉ†0,L(t1)

ĉ†1,L(t1)

]
⊗
[
|g0⟩⟨g0|
|g1⟩⟨g1|

])
= exp

(
iπ ĉ†1,R(t1) ĉ1,R(t1)⊗ |g1⟩⟨g1|

)([ĉ†0,R(t1)
ĉ†1,R(t1)

]
⊗
[
|g0⟩⟨g0|
|g1⟩⟨g1|

])
, (C.3)

where we assume that the interaction timescale (usually set by the cavity lifetime) is negligible

compared to the time bin size ∆t (the long pulse limit). Eq. C.3 is derived for scattering in the

single-photon subspace, but is applicable to multi-photon states as long as the photon wavefunctions

do not overlap in the scattering unit.

On the return trip, after scattering against the atom, the photon passes through the beamsplitter

and phase shifter in reverse order before being re-injected at time t2 = t1 + n∆t
2 into the ring at

points P1, P2, allowing us to relate the final set of operators:

[
b̂†0,L(t2)

b̂†1,L(t2)

]
= Z⊺

π
4
B⊺

[
ĉ†0,L(t1)

ĉ†1,L(t1)

]
,

[
â†⟲(t2)

â†⟳(t2)

]
=

[
b̂†0,L(t2)

b̂†1,L(t2)

]
. (C.4)

Note that the â† and b̂† operators have opposite couplings on the photon’s return trip; e.g. the

clockwise â†⟳ operator couples to the top waveguide b̂†0,R on the outgoing direction, while on the return

trip, the top waveguide b̂†0,L couples to the counterclockwise mode â†⟲. One can combine the equations

above to obtain that, if the atom is in the non-interacting state |g0⟩, the total transformation

performed on the photon by a round trip through the scattering unit is Zπ
4
BBZπ

4
, and the photon

state in the ring is unchanged up to a factor of i: â†⟳(t+ n∆t) = iâ†⟳(t) and â
†
⟲(t+ n∆t) = iâ†⟲(t).

For the purpose of the gate teleportation, we initialize the atom in the |g0⟩ state and use a

Ry (π/2) rotation to change the state to |+⟩ ≡ 1√
2
(|g0⟩+ |g1⟩). The scattering interaction applies

a π phase shift to the |1⟩ ⊗ |g1⟩ component of the joint quantum state, implementing a cσz gate.

After the photon has interacted with the atom, an Rx(−θ) rotation is applied to the atom as the

photon passes back through the beamsplitter and phase shifter and is injected back into the ring.

Thus, the joint photon-atom state after scattering is:

|Φ⟩ =
(
(Zπ

4
B)⊗Rx(−θ)

)
cσz

(
(BZπ

4
)⊗Ry(π/2)

)
(|ψin⟩ ⊗ |g0⟩) . (C.5)
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Finally, a projective measurement of the atom’s state in the {|g0⟩ , |g1⟩} basis is performed,

obtaining a bit m ∈ {0, 1}. If the atomic state collapses to state |gm⟩, then we obtain a disentangled

output photon-atom state:

|ψout⟩ ⊗ |gm⟩ =
1√
Pm

[1⊗ |gm⟩⟨gm|] |Φ⟩ , (C.6)

where Pm = tr [(1⊗ |gm⟩⟨gm|)|Φ⟩⟨Φ|]. Working in the long pulse, high cooperativity limit where

pulse shape deformation from the scattering interaction is negligible1, we obtain respective output

states for m = 0, 1 of:

|ψout⟩ ⊗ |g0⟩ =
∫
dt ϕ(t)

[(
iβ cos

θ

2
+ e

iπ
4 α sin

θ

2

)
â†⟳(t) +

(
iα cos

θ

2
+ e−

iπ
4 β sin

θ

2

)
â†⟲(t)

]
|∅⟩ ⊗ |g0⟩

(C.7)

|ψout⟩ ⊗ |g1⟩ =
∫
dt ϕ(t)

[(
e−

iπ
4 α cos

θ

2
− β sin θ

2

)
â†⟳(t)−

(
e

iπ
4 β cos

θ

2
+ α sin

θ

2

)
â†⟲(t)

]
|∅⟩ ⊗ |g1⟩ ,

(C.8)

with α, β the coefficients from the input state of Eq. C.1. Thus, the output photon state |ψout⟩,
depending on the outcome of the atomic measurement m, is:

|ψout⟩ =




−iZπ

4
σzRy(θ + π)Zπ

4
|ψin⟩ if m = 0

Zπ
4
σzRy(θ)Zπ

4
|ψin⟩ if m = 1

= Zπ
4
σz (−σy)m⊕1

Ry (θ)Zπ
4
|ψin⟩ ,

(C.9)

where m⊕ 1 denotes addition modulo 2.

C.2 Constructing arbitrary single-qubit rotations

To construct arbitrary single-qubit gates, we compose a sequence of teleported gates of the form

in Eq. C.9 with a sequence of “non-entangling” scattering process which correct for local Pauli

errors introduced depending on the atomic measurement outcomes. If the atom is initialized to the

off-resonant |g0⟩ state, then the atom-cavity system is on resonance with the incident photon and

behaves as a mirror. In this case, the π phase shifts imparted by the cavity and by the mirror in the

top waveguide cancel, and the photon state is transformed as |ψout⟩ = Zπ
4
BBZπ

4
|ψin⟩ = iσx |ψin⟩.

If the atom is initialized to |g1⟩, then the atom-cavity system is off resonance with the incident

1Here we assume that the temporal pulse length τ is much less than the time bin spacing ∆t but significantly
larger than the cavity decay rate, such that the pulse shape changes slowly compared to the cavity decay rate. This
means that the pulse shapes for the clockwise and counterclockwise components of the photon state do not change
independently. A more realistic treatment of the pulse deformation is given in the imperfection analysis presented
here and in the main text.
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photon. In this case, the phase shift from the mirror in the top waveguide is not matched and a

relative π phase shift is imparted between the top and bottom modes, transforming the photon state

as |ψout⟩ = Zπ
4
BσzBZπ

4
|ψin⟩ = −iσzZπ/2 |ψin⟩.

Now consider a sequence of three successive teleported rotation gates Ry(θ1), Ry(θ2), Ry(θ3),

with atomic measurement results m1,m2,m3. The goal here is to create a sequence of scattering

operations which result in a gate of the form U = Ry(θ3)Rx(θ2)Ry(θ1), which is sufficient to im-

plement any single-qubit gate up to an overall phase decomposed as Euler angles. [110] The total

operation U applied to the initial input state |ψin⟩ from the three scattering operations is:

U = (−1)m1⊕m2⊕m3⊕1
Zπ

4
σz(σy)

m3⊕1Ry(θ3)Zπ
4
Zπ

4
σz(σy)

m2⊕1Ry(θ2)Zπ
4
Zπ

4
σz(σy)

m1⊕1Ry(θ1)Zπ
4
.

(C.10)

We can simplify this expression using Zπ
4
Zπ

4
σz(σy)

m⊕1 = −i(−iσyσz)m⊕1Z−π
2
= −i(σx)m⊕1Z−π

2
,

which reduces Eq. C.10 to:

U = (−1)m3⊕m2⊕m1 (−i)m2⊕m1 Zπ
4
σz(σy)

m3⊕1Ry(θ3)(σyσz)
m2⊕1Z−π

2
Ry(θ2)(σyσz)

m1⊕1Z−π
2
Ry(θ1)Zπ

4
.

(C.11)

Since the results of previous measurements can add extraneous Pauli gates which affect future

rotations, we wish to perform adaptive operations based on the measured outcomes. After the first

measurement m1 is performed, the gate operation is:

U =




(−1)m3⊕m2 (−i)m2 Zπ

4
σz(σy)

m3⊕1Ry(θ3)(σyσz)
m2⊕1Z−π

2
Ry(θ2)σyσzZ−π

2
Ry(θ1)Zπ

4
if m1 = 0

(−1)m3⊕m2⊕1
(−i)m2⊕1

Zπ
4
σz(σy)

m3⊕1Ry(θ3)(σyσz)
m2⊕1Z−π

2
Ry(θ2)Z−π

2
Ry(θ1)Zπ

4
if m1 = 1.

(C.12)

Using the identities that σzZ−π
2
= iZ+π

2
and that Ri(θ)σi = −iRi(θ + π) for i = x, y, z, we can

rewrite this as:

U =




(−1)m3⊕m2 (−i)m2 Zπ

4
σz(σy)

m3⊕1Ry(θ3)(σyσz)
m2⊕1Z−π

2
Ry(θ2 + π)Z+π

2
Ry(θ1)Zπ

4
if m1 = 0

(−1)m3⊕m2⊕1
(−i)m2⊕1

Zπ
4
σz(σy)

m3⊕1Ry(θ3)(σyσz)
m2⊕1Z−π

2
Ry(θ2)Z−π

2
Ry(θ1)Zπ

4
if m1 = 1.

(C.13)

Substituting Z−π
2
Ry(θ)Z+π

2
= Rx(θ) and Z−π

2
Ry(θ)Z−π

2
= iσzRx(−θ), we rearrange the equation

to turn the second rotation gate into a Rx(±θ) gate, where the sign depends on the outcome of m1,
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which is already known:

U =




(−1)m3⊕m2 (−i)m2 Zπ

4
σz(σy)

m3⊕1Ry(θ3)(σyσz)
m2⊕1Rx(θ2 + π)Ry(θ1)Zπ

4
if m1 = 0

i (−1)m3⊕m2⊕1
(−i)m2⊕1

Zπ
4
σz(σy)

m3⊕1Ry(θ3)(σyσz)
m2⊕1σzRx(−θ2)Ry(θ1)Zπ

4
if m1 = 1

= (−1)m3 Zπ
4
σz(σy)

m3⊕1Ry(θ3)(iσyσz)
m2⊕1 ×




Rx(θ2 + π)Ry(θ1)Zπ

4
if m1 = 0

σzRx(−θ2)Ry(θ1)Zπ
4

if m1 = 1.

(C.14)

Importantly, the decision for which adaptive changes to apply to the θ2 operation (adding π or

inverting the angle) can be made knowing only the outcome of the previous measurement m1. Let

θ2(m1) = θ2 + π if m1 = 0 and −θ2 if m1 = 1 denote the adaptive angle to implement the desired

rotation Rx(θ2). Then we can rewrite Eq. C.14 as:

U = (−1)m3 Zπ
4
σz(σy)

m3⊕1Ry(θ3)(iσyσz)
m2⊕1σm1

z Rx (θ2(m1))Ry(θ1)Zπ
4
. (C.15)

We repeat this process of performing a measurement and commuting the error terms to the

front of the equation for measurement m2. After performing the second measurement, we use

Ry(θ)σz = σzRy(−θ) and the above identities to obtain:

U = (−1)m3 Zπ
4
σz(σy)

m3⊕1Ry(θ3)×





iσyσzRx (θ2(m1))Ry(θ1)Zπ
4

if m1 = 0,m2 = 0

Rx (θ2(m1))Ry(θ1)Zπ
4

if m1 = 0,m2 = 1

iσyσzσzRx (θ2(m1))Ry(θ1)Zπ
4

if m1 = 1,m2 = 0

σzRx (θ2(m1))Ry(θ1)Zπ
4

if m1 = 1,m2 = 1

= (−1)m3 Zπ
4
σz(σy)

m3⊕1 ×





−Ry(θ3 + π)σzRx (θ2(m1))Ry(θ1)Zπ
4

if m1 = 0,m2 = 0

Ry(θ3)Rx (θ2(m1))Ry(θ1)Zπ
4

if m1 = 0,m2 = 1

−Ry(θ3 + π)Rx (θ2(m1))Ry(θ1)Zπ
4

if m1 = 1,m2 = 0

Ry(θ3)σzRx (θ2(m1))Ry(θ1)Zπ
4

if m1 = 1,m2 = 1

= (−1)m3 Zπ
4
σz(σy)

m3⊕1 ×





−σzRy(−θ3 − π)Rx (θ2(m1))Ry(θ1)Zπ
4

if m1 = 0,m2 = 0

Ry(θ3)Rx (θ2(m1))Ry(θ1)Zπ
4

if m1 = 0,m2 = 1

−Ry(θ3 + π)Rx (θ2(m1))Ry(θ1)Zπ
4

if m1 = 1,m2 = 0

σzRy(−θ3)Rx (θ2(m1))Ry(θ1)Zπ
4

if m1 = 1,m2 = 1.

(C.16)

As before, the modifications to θ3 can be performed with only knowledge of m1 and m2. Let

θ3 (m2,m1) be defined as in Eq. C.16, such that θ3 (m2,m1) = (−1)m2⊕m2⊕1 (θ3 + π(1−m2)). We
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perform the final measurement m3 using this adaptive θ3. We obtain an equation of the desired

form with a possible Pauli error term ε(m1,m2,m3) at the front:

U = (−1)m3 Zπ
4
σz(σy)

m3⊕1(−1)m2σm2⊕m1⊕1
z Ry (θ3(m2,m1))Rx (θ2(m1))Ry(θ1)Zπ

4

= (−1)m3⊕m2⊕1
Zπ

4
σm2⊕m1
z (σy)

m3⊕1Ry (θ3(m2,m1))Rx (θ2(m1))Ry(θ1)Zπ
4

= (−1)m3⊕m2⊕1
σm2⊕m1
z (−σy)m3⊕1Zπ

4
Ry (θ3(m2,m1))Rx (θ2(m1))Ry(θ1)Zπ

4

≡ ε(m1,m2,m3)Zπ
4
Ry (θ3(m2,m1))Rx (θ2(m1))Ry(θ1)Zπ

4
,

(C.17)

where the error term ε(m1,m2,m3) is:

ε(0, 0, 0) = −σy
ε(0, 0, 1) = −1
ε(0, 1, 0) = −iσx
ε(0, 1, 1) = σz

ε(1, 0, 0) = −iσx
ε(1, 0, 1) = σz

ε(1, 1, 0) = −σy
ε(1, 1, 1) = −1.

(C.18)

We can remove any of these errors up to a global phase by using a sequence of non-interacting

passes, where the atom is initialized to |g0⟩ or |g1⟩ rather than |+⟩. To remove −iσx, we use a

|g0⟩ initialization to apply Zπ
4
BBZπ

4
= iσx. To remove σz, we use two |g1⟩-initialized scatterings

to apply Zπ
4
BσzBZπ

4
Zπ

4
BσzBZπ

4
= −iσz. To remove σy, we apply two |g1⟩-initialized scatterings

and one |g0⟩-initialized scatterings to apply Zπ
4
BσzBZπ

4
Zπ

4
BσzBZπ

4
Zπ

4
BBZπ

4
= −iσy. Thus, one

can apply arbitrary single-qubit operations parameterized via Y XY Euler angles using this gate

construction method.

C.3 Photonic qubit readout

To measure the state of a photonic qubit, we construct a SWAP gate from a sequence of three

scattering operations. We may initialize the atom to any state, and we then perform the sequence

of scattering interactions shown in Figure C.2.

Let |ψ⟩ =
(
αb̂†0L + βb̂†1L

)
|∅⟩ be the state of the photon at points P3, P4 in the device. By

scattering the photon against the atom three times and applying the rotation Ry(π/2)Rx(π) to the

atomic states in between scattering, one can swap the states of the photon and atom, such that the

final atomic state is α |g0⟩ + β |g1⟩. It is straightforward to verify that this sequence of operations



APPENDIX C. QUANTUM COMPUTING IN A SYNTHETIC TIME DIMENSION 131

| i BZ⇡
2
B • BZ⇡

2
B • BZ⇡

2
B • BZ⇡

2
B b̂†

0R |;i

|g0i • Ry(⇡/2)Rx(⇡) • Ry(⇡/2)Rx(⇡) • | i

<latexit sha1_base64="OezeQGEawx0ROzudzOJogJTr2iw="></latexit>

Figure C.2: Construction of a SWAP gate from three scattering interactions. The top rail denotes
the photonic qubit and the bottom rail denotes the atom. The BZπ

2
B operations correspond to

a return trip of the photon from the scattering site to the ring and back, passing through the
beamsplitter and phase shifter twice.

implements the SWAP gate up to a phase of -1:

(
BZπ

2
B ⊗ 1

)
cσz

(
BZπ

2
B ⊗ Yπ

2
Xπ

)
cσz

(
BZπ

2
B ⊗ Yπ

2
Xπ

)
cσz

(
BZπ

2
B ⊗ 1

)
= −1

(
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

)
.

(C.19)

Once the states of the photonic and atomic qubits are swapped, the atomic state can be measured

with near 100% efficiency using the quantum jump technique [162, 59] while the photonic qubit is

discarded by allowing it to gradually dissipate through leakage to the environment. This SWAP-

and-measure protocol can be repeated for the rest of the photonic qubits to read out the entire

photonic quantum state.

C.4 Implementing a two-photon cσz gate

In addition to implementing single-qubit gates, constructing a two-photon entangling gate is neces-

sary for universal computation. A controlled phase-flip gate cσz between two photonic qubits can

be constructed through a sequence of three scattering interactions in a somewhat similar manner

as in Ref. [59]. However, the fixed beamsplitter and phase shifter, which are required for im-

plementation of single-qubit gates in our scheme, only allow us to apply operations of the form(
(Zπ

4
B)⊗ 1

)
cσz

(
(BZπ

4
)⊗ 1

)
to the |photon⟩ ⊗ |atom⟩ system with each scattering interaction.

This prevents us from performing the exact protocol described in Ref. [59], which requires photons

to undergo three successive cσz operations without any gates between them.

Here we describe two possible implementations of this cσz gate between two photons A and B

in states |ψA⟩ and |ψB⟩ which work with the design of our proposed device. The first solution is to

use a SWAP gate as described in Section C.3 to swap the states of photon A and the atom, then

perform a scattering of photon B against the atom, then to swap the atomic state back to photon

A.

Although the construction of cσz through SWAP gates allows for direct interaction of |ψA⟩ with
|ψB⟩, it involves a total of 3 + 1 + 3 = 7 scattering interactions, which is significantly less compact

than the three scatterings used in the construction from Ref. [59].
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We can implement a more compact construction of cσz which also only requires three scatterings

by using a measurement based scheme shown in Figure C.3. This second possible construction imple-

ments a cσz gate between photons A and B which is sandwiched between single-qubit gates. These

extra gates can be implicitly removed by programming the single-qubit gate Ubefore which imme-

diately precedes this operation to instead implement
(
Zπ

4
B
)−1

Ubefore and the gate Uafter following

cσz to implement Uafter

(
BZπ

4

)−1
.

|ψA〉 Zπ
4
B • BZπ

4
Zπ

4
B • BZπ

4

|ψB〉 Zπ
4
B • BZπ

4

|+〉 • Ry(−π/2) • Ry(π/2) • m

|ψA〉 Zπ
4
B • BZ(−1)m π

2
B BZπ

4

|ψB〉 Zπ
4
B • BZπ

4

Figure C.3: Construction of a cσz gate with three scattering interactions using a measurement-
based approach. After measurement, the left and right circuits are equivalent. The single-qubit gates
on either side of cσz can be removed by absorbing them into the preceding/subsequent single-qubit
gates as described above.

C.5 Circuit compilation

An arbitrary n-qubit quantum operator U ∈ U(2n), can be compiled into a sequence of physical

instructions on the proposed device using a three-step process shown in Figure 4 of the main text,

and shown in greater detail in Figure C.4 of this document. The first step is to decompose U into a

sequence of single-qubit gates and cσz operations, a process described in our previous work [21]. The

second step is to decompose each single-qubit gate via Euler angles as three Ry rotations which may

be teleported onto the photonic qubits by a sequence of scatter-rotate-measure operations. The third

step is to use a high-speed classical control system to modify the adaptive rotations which are applied

to the atomic qubit based on the measurement outcomes during operation. Pauli errors which are

accumulated during the course of the circuit operation can either be removed explicitly by scattering

against |g0⟩ or |g1⟩, as described at the end of Section C.2, or can be removed implicitly (resulting in

a more compact circuit) by programming the inverse of the error term into subsequent single-qubit

operators. An example program for implementing a three-qubit quantum Fourier transform is shown

in Program C.1 at the end of this Supplementary Information document.
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INIT  |+>
SCTR  q
ROTX  θ1
MEAS  m1
INIT  |+>
SCTR  q
ROTX  (θ2+π*(1-m1))
      *(-1)^m1
MEAS  m2 
INIT  |+>
SCTR  q
ROTX  (θ3+π*(1-m2))
      *(-1)^(m1+m2+1)
MEAS  m3

SCTR  q1
ROTY  -π/2
SCTR  q2
ROTY  +π/2
SCTR  q1
MEAS  m

(a)

(b)

(c)

(d)

(e)

(f)

Figure C.4: Graphical depiction of the circuit compilation process. (a) The target quantum circuit
we wish to implement in the device, in this case a three-qubit quantum Fourier transform. (b) The
first step of the compilation process is to decompose complex circuit elements into single-qubit and
cσz gates. The subcircuit depicted here implements the first controlled-ϕπ

2
gate between photonic

qubits q1 and q2. (c, d) The second step is to decompose each single-qubit gate (c) via Euler
angles into a sequence of rotations which can be teleported from the atom to the photonic qubits,
and to decompose each cσz gate (d) using the scattering sequence shown in Figure C.3. (e, f)
Programmatic representation of the instructions sent to the device to implement subroutines (c,d),
respectively. The full code for implementing the target quantum circuit depicted in (a) is shown in
Program C.1.

C.6 Compiled example: quantum Fourier transform

1 # Instruction set

2 # ---------------

3 # OPEN t ... open the switches at time t

4 # CLOS t ... close the switches at time t

5 # ROTX θ ... laser pulse rotates atom state, Rx(θ)

6 # ROTY θ ... laser pulse rotates atom state, Ry(θ)

7 # MEAS m ... measure atom state and store bit as m

8 # INIT Ψ ... initialize atom to |Ψ>=|g0>,|g1>,|+>

9

10

11 # Scatter photon q and return it to ring

12 define SCTR q:

13 OPEN t_q-Δt/2 # t_q: time bin for |q>

14 CLOS t_q+Δt/2 # Δt: temporal bin size

15 OPEN N*Δt+t_q-Δt/2 # N: number of time bins

16 CLOS N*Δt+t_q+Δt/2 # N*Δt: time around ring

17

18
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19 # Explicitly correct Pauli errors after a gate

20 define CORR q m1 m2 m3:

21 if m3 == 0:

22 INIT |g1>

23 SCTR q

24 SCTR q

25 INIT |g0>

26 SCTR q

27 if m1 != m2:

28 INIT |g1>

29 SCTR q

30 SCTR q

31

32

33 # Single-qubit gate via Euler angles

34 define GATE q θ1 θ2 θ3:

35 INIT |+>

36 SCTR q

37 ROTX θ1

38 MEAS m1

39 INIT |+>

40 SCTR q

41 ROTX (θ2+π*(1-m1))*(-1)^m1 # adaptive θ2

42 MEAS m2

43 INIT |+>

44 SCTR q

45 ROTX (θ3+π*(1-m2))*(-1)^(m1+m2+1)

46 MEAS m3

47 CORR q m1 m2 m3 # remove Pauli ε(m1,m2,m3)

48

49

50 # Swap photon q with atom state

51 define LOAD q:

52 SCTR q

53 ROTX π

54 ROTY π/2

55 SCTR q
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56 ROTX π

57 ROTY π/2

58 SCTR q

59 ROTX π/2

60 ROTY π/4

61

62

63 # Controlled-σz between photons q1, q2

64 define CTRZ q1 q2:

65 GATE q1 0 3π/4 -π/2

66 GATE q2 0 3π/4 -π/2

67 SCTR q1

68 ROTY -π/2

69 SCTR q2

70 ROTY +π/2

71 SCTR q1

72 MEAS m

73 GATE q1 m*π π/2 (-1)^m*3π/2

74 GATE q2 π/2 3π/4 0

75

76

77 # Run a 3-qubit QFT and measure the qubits

78 GATE q1 5.668 2.094 0.615 # H

79 GATE q1 3.757 2.094 5.668 # cφ(π/2)

80 CTRZ q2 q1

81 GATE q1 2.101 1.718 4.182

82 CTRZ q2 q1

83 GATE q1 0.000 2.356 1.571

84 GATE q3 1.571 0.785 4.712 # cφ(π/4)

85 GATE q1 4.712 2.356 0.000

86 CTRZ q3 q1

87 GATE q1 1.845 1.609 4.438

88 CTRZ q3 q1

89 GATE q1 5.918 2.283 1.041

90 GATE q2 5.668 2.094 0.615 # H

91 GATE q2 3.757 2.094 5.668 # cφ(π/2)

92 CTRZ q3 q2
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93 GATE q2 2.101 1.718 4.182

94 CTRZ q3 q2

95 GATE q2 0.000 2.356 1.571

96 GATE q2 5.668 2.094 0.615 # H

97

98 # State readout

99 LOAD q1

100 MEAS b1

101 LOAD q2

102 MEAS b2

103 LOAD q3

104 MEAS b3

Program C.1: Assembly-like pseudocode for implementing the three-qubit quantum Fourier trans-
form shown in Figure C.4a. For simplicity and readability, this code explicitly corrects for Pauli
errors using the CORR subroutine and removes extraneous BZ terms in the cσz gate construction
using four additional GATE calls within CTRZ. The numerical values for the GATE angles in lines 78-96
were computed using a modified version of OneQubitEulerDecomposer in Qiskit [241].

C.7 Imperfection analysis

Here we describe the details of the imperfection analysis that we used for estimating the achievable

circuit depth, shown in Figure 4 of the main text. The main sources of error for our protocol are

the same as for the Duan-Kimble protocol [59], but with the added loss from the switches and

propagation loss through the storage ring. We group these errors into three main classes:

• Pulse shape infidelity: mismatch between the cavity output pulses for the atom being in the

|g0⟩ and |g1⟩ states. This loss can be minimized by choosing the photon’s temporal width (τ)

to be much larger than the cavity photon lifetime 1/κ: κτ ≫ 1.

• Spontaneous emission loss of the excited state of the atom, where the atom in the |e⟩ state
emits not into the desired cavity mode but into other modes or into free space. In our scheme,

this causes photon leakage error when the atom is in the |g1⟩ state, since the photon causes

the |g1⟩ state to temporarily transition to |e⟩.

• Photon loss due to optical elements. This includes optical attenuation while propagating

through the storage ring, insertion loss of the optical switches, and spurious loss from the

cavity mirrors or the cavity medium.

We assume that the cavity mode at ωc is resonant with the atom |g1⟩ ↔ |e⟩ transition frequency

Ω1, since the detuning can be actively tuned to be zero, both in free-space by tuning the cavity length,



APPENDIX C. QUANTUM COMPUTING IN A SYNTHETIC TIME DIMENSION 137

as well as in solid-state nanophotonic systems through temperature or strain. We also assume that

rotations of the atomic state by the cavity laser and measurement of the state via the quantum

jump technique can be done with fidelity F ≈ 1, since both processes have been demonstrated

experimentally with very high fidelities [74] greatly exceeding that of the effects listed above.

To quantify the effects of these sources of error, we assume the input waveguide contains a

single photon Fock state of the form
∫
dt ϕin(t) â

†
in(t) |∅⟩, where ϕin(t) is the pulse shape, |∅⟩ rep-

resents the vacuum state of the waveguide modes, and â†in(t) is a bosonic operator obeying the

standard commutation relation [âin(t), â
†
in(t

′)] = δ(t − t′) which creates a photon propagating to-

ward the cavity in the waveguide at time t. For the cavity output, we assume a similar form,∫
dt ϕout(t) â

†
out(t) |∅⟩ [59, 224], where â†out(t) is similarly defined and creates a photon propagating

away from the cavity at time t. For our analysis, we choose a Gaussian pulse envelope centered at

t0 = ∆t/2 for the input: ϕin(t) ∝ exp
[
−(t− t0)2/τ2

]
, as studied in Ref. [59].

To solve for the output single-photon pulse, we use the analytical technique described by Shen

and Fan [223, 224], which exactly solves the single-photon transport problem of a coupled atom-

cavity-waveguide system, taking into account all relevant energy scales. The effective Hamiltonian

of the overall system is given by [224]:

Heff/ℏ =(ωc − iκi/2) â†â+ (Ωe − iγs/2)|e⟩⟨e|+Ω1|g1⟩⟨g1|+Ω0|g0⟩⟨g0|+
(
g â†|g1⟩⟨e|+H.c.

)

+

∫
dx δ(x)

[√
κvg/2 â

†âin(x) +
√
κvg/2 â

†âout(x) + H.c.

]

+

∫
dx â†in(x)(ωc − ivg∂x) âin(x) +

∫
dx â†out(x)(ωc + ivg∂x) âout(x),

(C.20)

where â† is a bosonic operator that creates a photon in the cavity mode at ωc obeying [â, â†] = 1, κi

is the intrinsic dissipation rate of the cavity mode, Ω0,1,e are the energies of the respective atomic

states, g is the single-photon atom-cavity coupling rate (equal to half the vacuum Rabi splitting),

vg is the group velocity of the waveguide in the vicinity of the cavity resonant frequency ωc, and γs

is the spontaneous emission rate of the atomic |e⟩ state2. In the following analysis, we set κi = 0.

The spectrum of the output pulse, ϕ̃out(ω) = F{ϕout(t)} is related to the input pulse spectrum

ϕ̃in(ω) = F{ϕin(t)} by the spectral response of the cavity-atom system R(ω, g, κ, γs, |A⟩). Here,

F{·} denotes the Fourier transform, and ω denotes the input photon detuning from the cavity/atom

resonance, ω = ωin − (Ωe − Ω1) = ωin − ωc. The spectral response depends on the initial state

of the atom |A⟩ ∈ {|g0⟩ , |g1⟩}. This treatment captures the full quantum mechanical response of

2One should note that, while the use of the non-Hermitian −iγs/2|e⟩⟨e| term is known to produce correct scattering
matrices for single-photon interactions, the direct substitution of Ωe → Ωe − iγs/2 to describe spontaneous emission
loss will yield incorrect results for temporally-overlapping multi-photon scattering interactions. [207] The more correct
treatment here is to add additional couplings between the system Hamiltonian and a bath of modes describing the
environment, but this is not necessary for our analysis, which is limited to single-photon interactions.
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the system to a single-photon Fock state input for an arbitrary initialization of the atom, without

making the semiclassical assumption of a weak coherent state for the input.

Pulse shape infidelity and delay correction — For an atom initialized as |A⟩ = |g0⟩, the response

is identical to an empty cavity since the |g0⟩ ↔ |e⟩ transition frequency is far-detuned from the cavity

mode frequency Ωc [60]. In this case, the output pulse is slightly delayed from the input pulse by a

time δt0, as it couples into the empty cavity mode before coupling out, leading to a fidelity below

unity, as shown in Figure 4 of the main text. For an initialization |A⟩ = |g1⟩, the photon is directly

reflected from the front mirror of the cavity, since the dressed cavity modes are well-separated from

the input photon frequency by the vacuum Rabi splitting for strong coupling g ≫ κ, γs, and the

delay δt1 ≈ 0 is minimal. Here the pulse shape fidelity is defined as [60, 61]:

Fshape ≡
∣∣∣∣
∫
dt ϕ̄∗in(t) ϕ̄out(t)

∣∣∣∣ , (C.21)

where ϕ̄in and ϕ̄out are the renormalized input and output pulses. The pulse shape infidelity is

defined as 1−Fshape. Importantly, this quantity only describes the infidelity due to shape mismatch

of the input and output pulses, not amplitude mismatch; the infidelity due to spontaneous emission

loss is computed separately. The average infidelity for an initialization in the |+⟩ = (|g0⟩+ |g1⟩)/
√
2

state is calculated as the mean of the infidelities for the |g0⟩ and |g1⟩ states [59]. In our calculations,

using a long pulse width τ = 100/κ and total interaction timescale T = 500/κ and assuming no

intrinsic losses in the cavity (κi = 0) aside from spontaneous emission results in a low infidelity

below 10−3 per photon-cavity scattering event.

In Figure 4(b) of the main text, we plot the shape infidelity of various states as a function of

the single-atom cavity cooperativity C ≡ 4g2/κγs, where γs measures the spontaneous emission rate

and is fixed at γs = κ/5. The pulse shape infidelity of an interaction with the |g1⟩ state decreases

to negligible values as C increases, while the infidelity of |g0⟩ reaches an asymptote at 8 × 10−4

due to the delay of the output pulse by a time δt0 which is independent of C; the infidelity of the

|+⟩ interaction asymptotes at 4 × 10−4. Since the atom will usually be initialized to the |+⟩ state
during operation of the device, it is useful to minimize the infidelity of interacting with this state.

This can be done by delaying the reference pulse by a time difference tdelay = (δt0 + δt1)/2 ≈ δt0/2
by adding an additional path length c tdelay/2 to the top waveguide in Figure 1 of the main text.

This distributes the infidelity due to the output pulse delay equally between the |g0⟩ and |g1⟩ states,
such that the output pulse of a |g1⟩ interaction is shifted forward by δt0/2 and the output of a |g0⟩
interaction is delayed by δt0/2. This results in an infidelity of approximately 2 × 10−4 which is

independent of both cavity cooperativity (at C ≫ 1) and atomic state initialization.

Spontaneous emission loss — Atomic spontaneous emission noise from the excited |e⟩ state at a

rate γs results in a partial loss of the photon, resulting in an output pulse with total photon number
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∫
dt |ϕout(t)|2 < 1. We calculate the probability Ps of spontaneous emission loss as:

Ps = 1−
∫
dt |ϕout(t)|2∫
dt |ϕin(t)|2

. (C.22)

Spontaneous emission noise only applies to the |1⟩ ⊗ |g1⟩ component of the photon ⊗ atom state.

The atom will usually be initialized to the |+⟩ state, and averaging over possible input photon

states, we obtain an average leakage probability of P̄s = Ps/4, as shown in Figure 4(b), which is

well-approximated by P̄s = [4(1 + 2C)]−1.

Spurious photon loss and maximum circuit depth — Finally, we account for loss due to propaga-

tion through the optical paths and switches as an average loss per cycle L. To estimate the maximum

circuit depth D attainable with an overall fidelity F > Ftarget, we compute a “bulk fidelity” ac-

counting for shape mismatch and loss due to average spontaneous emission and propagation through

the storage ring. For simplicity, we assume the circuit operates on only a single photonic qubit and

that the photon is scattered off the atom with every pass through the storage ring. The achievable

circuit depth operating with success probability Psuccess = Ftarget is thus the maximum D satisfying:

[
Fshape × (1− P̄s)× (1− L)

]D ≥ Ftarget, (C.23)

which is plotted as a function of cavity cooperativity and propagation loss in Figure 5.4(c).



Appendix D

Programmable photonic quantum

emulator

In this Appendix, we give more detailed presentations of the results described the main text. In

Sections D.1 and D.2 we derive a correspondence between the device physics and the terms in the

target Hamiltonian, and in Section D.3 we provide additional details on the simulation methods

used to tractably simulate interacting bosons on large lattices.

D.1 Deriving hopping coefficients between sites

The Hamiltonians of interest take the form:

Ĥ =
∑

⟨m,n⟩

(
κmne

iαmn â†mân +H.c.
)
+ µ

∑

m

â†mâm + U
∑

m

â†mâ
†
mâmâm, (D.1)

where â†m creates a boson at node m, κm,n denotes the hopping coefficients between sites m and

n, with the Hermitian requirement that κm,n = κn,m, µ is the single-body energy per site, U is

the Hubbard interaction strength, and αm,n is a phase shift accumulated by moving from site m to

n. The two-particle summation in the first term is taken over all connected sites ⟨m,n⟩, where the

connectivity of the simulated system is determined with suitable choice of {κm,n}.
A system evolving under the Hamiltonian Ĥ in Eq. D.1 will have a propagator (with ℏ = 1) of

the form:

e−iĤt = exp


−it


−

∑

⟨m,n⟩
κmne

iαmn â†mân + µ
∑

m

â†mâm + U
∑

m

â†mâ
†
mâmâm




 (D.2)

140
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If we add Hermitian constraints to the Hamiltonian, we have that κmn = κnm and αmn = −αnm,

so we can write:

e−iĤt = exp


−it


−

∑

⟨m,n⟩
κmn

(
eiαmn â†mân + e−iαmn â†nâm

)
+ µ

∑

m

â†mâm + U
∑

m

â†mâ
†
mâmâm




 ,

(D.3)

where the product over ⟨m,n⟩ now implicitly avoids double-counting, as we have explicitly included

the Hermitian conjugate in the first term. We can series expand this using the the Suzuki-Trotter

expansion as et(X+Y ) = etXetY e−
t2

2 [X,Y ]e
t3

6 (2[Y,[X,Y ]]+[X,[X,Y ]]) · · · to separate the summation into

a product of matrix exponentials:

e−iĤt ≈ exp


it

∑

⟨m,n⟩
κmn

(
eiαmn â†mân + e−iαmn â†nâm

)

× e−it(µ

∑
m â†mâm+U

∑
m â†mâmâmâ

†
m)

× exp


− t

2

2


 ∑

⟨m,n⟩
iκmn

(
eiαmn â†mân + e−iαmn â†nâm

)
,
∑

m

µâ†mâm +
∑

m

Uâ†mâ
†
mâmâm






≡ exp


it

∑

⟨m,n⟩
iκmn

(
eiαmn â†mân + e−iαmn â†nâm

)

× e−it(µ

∑
m â†mâm+U

∑
m â†mâmâmâ

†
m) × εκ,µ × εκ,U

(D.4)

We evaluate the commutator error terms εµ and εU in Section D.1.1 and find that εµ = 1 since the

κmn and µ terms commute, and εU = exp
(
−2t2U∑⟨m,n⟩ κmn cosαmn

(
(â†mâm)â†nâm − â†mân(â†mâm)

))
.

We now perform a second series expansion on the first term to separate the exponential of sum

into a product of exponentials:

e−iĤt ≈


 ∏

⟨m,n⟩
exp iκmn

(
eiαmn â†mân + e−iαmn â†nâm

)


t

× e−it(
∑

m µâ†mâm+Uâ†mâ
†
mâmâm) × εU

× exp


− t

2

2

∑

⟨j,k ̸=k′⟩
[κjk(e

iαjk â†j âk + e−iαjkâ†kâj), κjk′(e
iαjk′ â†j âk′ + e−iαjk′ â†k′ âj)]




≡


 ∏

⟨m,n⟩
exp iκmn

(
eiαmn â†mân + e−iαmn â†nâm

)


t

× e−it(
∑

m µâ†mâm+Uâ†mâ
†
mâmâm) × εU × εκ.

(D.5)

We can expand the exponentials of the error terms as eA ≈ 1+A to obtain error scaling on the final
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result:

e−iĤt =


 ∏

⟨m,n⟩
exp

(
iκmne

iαmn â†mân +H.c.
)


t

× e−it(
∑

m µâ†mâm+Uâ†mâ
†
mâmâm)

×


1+O(κU cosα)

∑

⟨m,n⟩

(
â†nâ

†
mâmâm − ânâ†mâ†mâm

)
+O(κ2)

∑

⟨j,k ̸=k′⟩
[â†j âk, âj â

†
k′ ]




−t2/2

(D.6)

where κ, α is shorthand for typical (or uniform) values of κmn, αmn. If we have small coefficients

κ, U ≪ 1, then O(κ2 + κU) is negligible, and we ignore the commutator error term going forward.

If κ, U is not small, we can reduce the emulated values of κmn, µ, and U by some constant factor C

and run the emulation for a commensurately longer wall clock time Ct. Thus, to within O(κ2+κU),

we can write the propagator as:

e−iĤt =


 ∏

⟨m,n⟩
exp

(
iκmne

iαmn â†mân +H.c.
)


t

× e−it(µ
∑

m â†mâm+U
∑

m â†mâ
†
mâmâm). (D.7)

Now consider the tunable MZI connecting the storage ring to the register ring as shown in Figure

1 of the main text. Define bosonic operators â†1 and â†2 which create right-moving photons at the

input waveguides to the MZI and operators b̂†1 and b̂†2 which create right-moving output photons.

The transfer matrix of the MZI if the internal phase shifter is set to an angle θ and the external

phase shifters are set to ±ϕ is T = Rz(−ϕ)HRz(θ)HRz(+ϕ). Thus, we can relate the output modes

to the input modes as:

[
b̂†1
b̂†2

]
=

(
cos θ2 ieiϕ sin θ

2

ie−iϕ sin θ
2 cos θ2

)[
â†1
â†2

]
= exp

[
i
θ

2

(
eiϕâ†1â2 + e−iϕâ†2â1

)][â†1
â†2

]
. (D.8)

If we define κ ≡ θ
2 and α ≡ ϕ, then we obtain the desired transfer matrix from which we can

construct the first part of the propagator in Eq. D.7:

T12 = exp
[
iκ
(
eiαâ†1â2 + e−iαâ†2â1

)]
. (D.9)

If we apply a sequence of passes of the photon pulses through the MZI, then by appropriately

choosing values of θ, ϕ to match κmn, αmn, we obtain a total transfer matrix of:

T⟨m,n⟩ =
∏

⟨m,n⟩
exp

(
iκmn

(
eiαmn â†mân + e−iαmn â†nâm

))
, (D.10)
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so after t repetitions of this sequence of passes, the total accumulated operation is:

T⟨m,n⟩ =


 ∏

⟨m,n⟩
exp

(
iκmn

(
eiαmn â†mân + e−iαmn â†nâm

))


t

, (D.11)

which is exactly the desired form from the propagator in Eq. D.7.

D.1.1 Evaluating the commutator error terms

We can split the commutator in the last line of Eq. D.4 into two parts: exp
(
−it2/2(εκ,µ + εκ,U )

)
.

Starting with the κmn, µ commutator, we have:

εκ,µ =


 ∑

⟨m,n⟩
κmn(e

iαmn â†mân + e−iαmn â†nâm)),
∑

m

µâ†mâm




=
∑

⟨m,n⟩
κmn(e

iαmn â†mân + e−iαmn â†nâm))
∑

o

µâ†oâo −
∑

o

µâ†oâo
∑

⟨m,n⟩
κmn(e

iαmn â†mân + e−iαmn â†nâm))

=
∑

o

µ
∑

⟨m,n⟩
κmn

(
(eiαmn â†mân + e−iαmn â†nâm))â†oâo − â†oâo(eiαmn â†mân + e−iαmn â†nâm))

)
.

(D.12)

Imposing δom and δon, for each point o, we have εmu = εo=m + εo=n:

εo=m = µ
∑

⟨m,n⟩
κmn

(
(eiαmn â†mân + e−iαmn â†nâm))â†mâm − â†mâm(eiαmn â†mân + e−iαmn â†nâm))

)

εo=n = µ
∑

⟨m,n⟩
κmn

(
(eiαmn â†mân + e−iαmn â†nâm))â†nân − â†nân(eiαmn â†mân + e−iαmn â†nâm))

)
.

(D.13)
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Using that ââ†â = â†ââ+ â and â†â†â = ââ†â† − â†, we expand these expressions to obtain:

εo=m = µ
∑

⟨m,n⟩
κmn

(
eiαmn â†mân(â

†
mâm)) + e−iαmn â†nâm(â†mâm))− eiαmn(â†mâm))â†mân − e−iαmn(â†mâm))â†nâm

)

= µ
∑

⟨m,n⟩
κmn

(
eiαmn ânâ

†
mâ

†
mâm + e−iαmn â†nâmâ

†
mâm − eiαmn ânâ

†
mâmâ

†
m − e−iαmn â†nâ

†
mâmâm

)

= µ
∑

⟨m,n⟩
κmn

(
eiαmn ânâ

†
mâ

†
mâm + e−iαmn â†n(â

†
mâm + 1))âm − eiαmn ânâ

†
m(â†mâm + 1))− e−iαmn â†nâ

†
mâmâm

)

= µ
∑

⟨m,n⟩
κmn

(
e−iαmn â†nâm − eiαmn ânâ

†
m

)

εo=n = µ
∑

⟨m,n⟩
κmn

(
eiαmn â†mân(â

†
nân)) + e−iαmn â†nâm(â†nân))− eiαmn(â†nân))â

†
mân − e−iαmn(â†nân))â

†
nâm

)

= µ
∑

⟨m,n⟩
κmn

(
eiαmn â†mân − e−iαmn âmâ

†
n

)
.

(D.14)

Therefore εκ,µ = εo=m + εo=n = 0, so the κmn and µ terms commute. Now we evaluate the εκ,U

error term. Starting as before we have:

εU =


 ∑

⟨m,n⟩
κmn(e

iαmn â†mân + e−iαmn â†nâm)),
∑

m

Uâ†mâ
†
mâmâm




=
∑

⟨m,n⟩
κmn(e

iαmn â†mân + e−iαmn â†nâm))
∑

o

Uâ†oâ
†
oâoâo −

∑

o

Uâ†oâ
†
oâoâo

∑

⟨m,n⟩
κmn(e

iαmn â†mân + e−iαmn â†nâm))

=
∑

o

U
∑

⟨m,n⟩
κmn

(
(eiαmn â†mân + e−iαmn â†nâm))â†oâ

†
oâoâo − â†oâ†oâoâo(eiαmn â†mân + e−iαmn â†nâm))

)
.

(D.15)

Once again we impose δom, δon, so for each point o we have εκ,U = εo=m + εo=n:

εo=m = U
∑

⟨m,n⟩
κmn

(
(eiαmn â†mân + e−iαmn â†nâm))â†mâ

†
mâmâm − â†mâ†mâmâm(eiαmn â†mân + e−iαmn â†nâm))

)

εo=n = U
∑

⟨m,n⟩
κmn

(
(eiαmn â†mân + e−iαmn â†nâm))â†nâ

†
nânân − â†nâ†nânân(eiαmn â†mân + e−iαmn â†nâm))

)
.

(D.16)
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Using that ââ†â†ââ = â†â†âââ+ 2â†ââ and â†â†â†ââ = â†â†âââ† − 2â†â†â, we obtain:

εo=m = U
∑

⟨m,n⟩
κmn(e

iαmn â†mân(â
†
mâ

†
mâmâm)) + e−iαmn â†nâm(â†mâ

†
mâmâm))

− eiαmn(â†mâ
†
mâmâm))â†mân − e−iαmn(â†mâ

†
mâmâm))â†nâm)

= U
∑

⟨m,n⟩
κmn(e

iαmn â†mân(â
†
mâ

†
mâmâm)) + e−iαmn â†nâm(â†mâ

†
mâmâm))

− eiαmn â†mân(â
†
mâ

†
mâmâm))− e−iαmn â†nâm(â†mâ

†
mâmâm))

− 2eiαmn ânâ
†
mâ

†
mâm + 2e−iαmn â†nâ

†
mâmâm)

= U
∑

⟨m,n⟩
2κmn

(
e−iαmn(â†mâm))â†nâm − e+iαmn â†mân(â

†
mâm))

)

εo=n = U
∑

⟨m,n⟩
2κmn

(
e+iαmn(â†nân))â

†
mân − e−iαmn â†nâm(â†nân))

)
.

(D.17)

Therefore the error term εκ,U = εo=m + εo=n is:

εκ,U = U
∑

⟨m,n⟩
2κmn

(
e−iαmn(â†mâm))â†nâm − e+iαmn â†mân(â

†
mâm))

)

+ U
∑

⟨m,n⟩
2κmn

(
e+iαmn(â†nân))â

†
mân − e−iαmn â†nâm(â†nân))

)
.

(D.18)

In the second term, we will swap the m and n indices. Since the second summation is separate from

the first and this is just a notational change, we do not switch αmn = −αnm, so we have:

εκ,U = U
∑

⟨m,n⟩
2κmn

(
e−iαmn(â†mâm))â†nâm − e+iαmn â†mân(â

†
mâm))

)

+ U
∑

⟨m,n⟩
2κmn

(
e+iαmn(â†mâm))â†nâm − e−iαmn â†mân(â

†
mâm))

)
.

(D.19)

Combining these expressions, we obtain the final result:

εκ,U = U
∑

⟨m,n⟩
2κmn

(
(e−iαmn + e+iαmn))(â†mâm))â†nâm − (e+iαmn + e−iαmn))â†mân(â

†
mâm))

)

= 4U
∑

⟨m,n⟩
κmn cosαmn

(
(â†mâm))â†nâm − â†mân(â†mâm))

)
.

(D.20)

Thus, employing the discrete time evolution for the emulation of the κmn terms with the MZI does

impose an error term scaling as O (Uκ cosα). However, for αmn = π/2, this error term vanishes

and perfect emulation is possible. This is interesting and particularly fortunate as α = π/2 is the

hopping phase at which most topological effects are maximized in 2D.
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D.2 Deriving nonlinear on-site interaction potential

For lossless and dispersionless media, the polarization density can be expanded in the form [33]

P (t) = ϵ0

[
χ(1)E(t) + χ(2)E2(t) + χ(3)E3(t) + · · ·

]
, (D.21)

where ϵ0 is the permittivity of free space, χ(n) terms are optical susceptibilities, and where where

P (t) and E(t) are expressed as scalar quantities for simplicity. For media with inversion symmetry

(e.g. glass), the χ(2) term vanishes. [31]

We can write E(t) in the frequency domain as a summation is over frequencies ωn:

E(t) =
∑

n

[
E(ωn)e

−iωnt + E(−ωn)e+iωnt
]
, (D.22)

where E(ωn) = |En|eik·r/2 = E(−ωn)∗. The polarization density can similarly be expressed as

P (t) =
∑

n

[P (ωn)e
−iωnt + P (−ωn)e+iωnt]. (D.23)

Since the Kerr nonlinearity arises from the third-order susceptibility χ(3), we will focus on this

term and refer to it as PNL(ω). We can write this nonlinear polarization vector as:

PNL,i(ω) = ϵ0
∑

ijkl

∑

(mno)

χ
(3)
ijkl(ωn, ωm, ωo)× Ej(ωm)Ek(ωn)El(ωo), (D.24)

where χ(3) is a rank-4 tensor, i, j, k, l are Cartesian coordinates, and (mno) refers to the number of

permutations of the distinguishable E fields that yield the same ωm + ωn + ωo term, following the

notation of Ref. [33]. The term that gives rise to the intensity-dependent refractive index is:

PNL,i(ω) = 3ϵ0
∑

ijkl

χ
(3)
ijkl(ω)× Ej(ω)Ek(ω)El(−ω). (D.25)

Assuming the medium is isotropic and homogeneous (e.g. glass), the susceptibility becomes

polarization-independent and thus can be treated as a scalar. [234] Without loss of generality,

assume the input E fields are linearly-polarized in the x direction, denoted by index j, k, l = 1. The

electric field energy density for the third-order nonlinear polarization can be expressed as [33]:

UNL =
3ϵ0
4

∑

i111

χ
(3)
i111 × E∗

i (ω + ω − ω)E1(ω)E1(ω)E
∗
1 (ω) (D.26)

=
3ϵ0
4

∑

i111

χ
(3)
i111 × E∗

i (ω + ω − ω)|E1(ω)|2E1(ω) (D.27)

From this expression, the nonlinear polarization PNL along a direction i can be obtained by
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differentiating with respect to E∗
i :

PNL,i =
∂UNL

∂E∗
i

(D.28)

Defining z to be the direction of field propagation in the fiber, the electric fields in the ring fiber

can now be quantized as follows: [140, 65]

E =
∑

k

i

(
ℏωk

2ϵ0n20V

)1/2

(âke
−i(ωkt−kz) + â†ke

+i(ωkt−kz)) (D.29)

where â†k and âk are the bosonic creation and annihilation operators at the frequency ωk. E has

been normalized to the volume V of the fiber, and n0 is the refractive index of the fiber. We can

express the operators in real space through Fourier transform [223]:

âk =

∫ L

0

âωk
(z)e−ikzdz (D.30)

â†k =

∫ L

0

â†ωk
(z)e+ikzdz, (D.31)

where âωk
(z) and â†ωk

(z) annihilate and create a photon with frequency ωk at position z in real

space, respectively, and where L is the length of the fiber. Since we employ monochromatic light

at frequency ω0, we only have modes within a narrow bandwidth around ω0 (k0). Thus, we can

replace the k-space operators in Equation D.29 with the real-space operators âω0
(z) and â†ω0

(z),

which we will hereafter refer to as a and a†, respectively. Substituting the quantized electric fields

into our expression for the energy density and applying the rotating-wave approximation, we have

the following terms in our expression for the total energy of the third-order nonlinear susceptibility:

H =

∫

V

UNLd
3r =

3ϵ0
4

∫

V

χ(3)|E|4d3r

=
3ϵ0ℏ2ω2

0

16ϵ20n
4
0V

2

∫

V

χ(3)(ââ† + ââe−2i(ω0t−k0z) + â†â†e+2i(ω0t−k0z) + â†â)2d3r

≈ 3ℏ2ω2
0

16ϵ0n40V
2

∫

V

χ(3)(6â†â†ââ+ 12â†â+ 3)d3r

=

(
9ℏ2ω2

0

8ϵ0n40V
2

∫

V

χ(3)d3r

)
â†â†ââ+ C,

(D.32)

where C is some constant corresponding to an overall energy shift [265]. This gives the desired

â†a†ââ term in the Hamiltonian, where the coefficient U =
9ℏ2ω2

0

8ϵ0n4
0V

2

∫
V
χ(3)d3r. Note that we only

retain the two-photon interaction term â†mâ
†
nâpâq where m = n = p = q in the Hamiltonian since

only spatially localized photons in the same time bin interact to achieve the optical Kerr effect, and

we are assuming monochromatic light with one frequency mode ω0.



APPENDIX D. PROGRAMMABLE PHOTONIC QUANTUM EMULATOR 148

D.3 Simulation details

Here we outline the details of the simulations we use to compare the evolution of the states under the

emulated Hamiltonians against the exact target Hamiltonians. We use a custom simulation method

built with QuTiP [107] for all simulations presented in this paper.

D.3.1 Tractable simulation with a Ponomarev state representation

Suppose the device contains L number of time bins (including the register) and the initial state is

a N -photon Fock state. The Hilbert space H which spans the possible evolutions of this state can

thought of as a system of L entangleable (N+1)-qudits (since the vacuum state |∅⟩must additionally

be supported). In this representation the Hilbert space has dimensionality (N +1)L, and is spanned

by the creation operators â†
n

ℓ , which create 0 ≤ n ≤ N photons in time bin 1 ≤ ℓ ≤ L. However, this

representation is highly degenerate, supporting many invalid states, such as
⊗L

ℓ=1 â
†(N−1)
ℓ |∅⟩, which

has more than N total photons in the system. To simulate even the modest 3 × 3 lattice depicted

in Figure 1 of the main text requires operators with dimensionality 59049× 59049 ≈ 3.5× 109.

A more tractable representation can be obtained by inverting the indexing and considering the

possible placements of identical bosons into time bins. A number of identical bosons N can be placed

into L distinct lattice sites in NL
N =

(
N+L−1

L

)
different ways. From this, we can generate a unique

labeling of the allowable states in the system using a procedure devised by Ponomarev [192, 191] and

described in Ref. [201]. We use the fact that NL
N can be generated recursively as NL =

∑N
n=0NL−1

N−n
to generate a counting scheme which evaluates all N ℓ

n up to L,N .

Suppose we have Fock state |ψ⟩ with the occupancies of the L lattice sites described in an N -

dimensional vector (ℓ1, ℓ2, · · · , ℓN ), with mi ≤ mj for i > j. The integer label nψ of this state is

nψ = 1 +

N∑

i=1

NL−ℓi
i . (D.33)

For example, as shown in Figure D.1, with L = 8, N = 4, the Fock state |ψ⟩ = |0, 0, 2, 0, 1, 0, 0, 1⟩
maps to (ℓ1, ℓ2, ℓ3, ℓ4) = (8, 5, 3, 3), and the integer label is nψ = 1 +N 3

1 +N 3
2 +N 5

3 +N 8
4 = 112.

The inverse mapping is found with an iterative process: given nψ, we find the largest ℓN such that

N ℓN
N < nψ, then find the largest ℓN−1 such that N ℓN−1

N−1 < nψ −N ℓN
N , and so on.

To construct annihilation operators, we consider the direct sum of all smaller Hilbert spaces

Figure D.1: An example Fock state |ψ⟩ = |0, 0, 2, 0, 1, 0, 0, 1⟩, which can be re-indexed by boson
number as |ψ′⟩ = |8, 5, 3, 3⟩ . This maps to the Ponomarev basis state |nψ⟩ = |112⟩.
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Figure D.2: Construction of an annihilation operator in the bosonic lattice representation. Python
pseudocode showing the process for constructing a QuTiP object from the Ponomarev indexing
functions is included in the upper right.

HLn≤N =
[⊕N

n=0HLn
]
. The annihilation operators âi are constructed from a

(∑
nNL

n ×
∑
nNL

n

)
-

dimensional matrix of zeros by iterating over all basis state labels nψ = 1, 2, · · · ,NL
N . To construct

âi, for each Fock state |k1k2 · · · ki · · · kL⟩ with ki > 0, a transition element is added which maps

|k1k2 · · · ki · · · kL⟩ 7→
√
ki |k1k2 · · · (ki − 1) · · · kL⟩. The corresponding creation operator â†i is simply

the Hermitian conjugate of this operator, and photon expectation values in time bin i are still ⟨â†i âi⟩
in this representation. The matrices are converted to QuTiP operators and the rest of the simulation

is carried out normally. This process is illustrated in Figure D.2.

This representation is especially effective for simulating systems with many more lattice sites

than bosons L ≫ N . For a 10 × 10 lattice containing two photons, the dimensionality of the state

vectors is reduced from 5× 1047 to 5050.

D.4 Details for bandstructure computation

The band structures in Fig. 2 of the main text are computed for the synthetic case by simulating

one iteration of the propagator Ĝ = e−iĤ(t=1) in the device, taking the matrix logarithm Ĥ = log Ĝ
−i ,

and then diagonalizing Ĥ. In both the emulated and exact cases, the Hamiltonian is represented

in real space in the computer simulation; for each eigenstate of Ĥ with eigenvalue E, we compute

k values using peak detection of its Fourier transform, as shown in Figure D.3. This can result in
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Figure D.3: Computing the k values for a lattice eigenstate using peak detection of the Fourier
transform.

small numerical instabilities which are present in both the exact and emulated cases. Cases where

the Fourier transform does not have clear peaks may result in outlying points with errant values of

k; highly outlying points in Figure 2(b) of the main text have been pruned, but do not comprise

more than 1% of the data.

D.5 Dispersion analysis

In the linear regime of small U (where we can ignore the effects of nonlinear pulse broadening),

if we assume the same initial pulse shape with pulse length δx within each bin of size ∆x (with

δx ≪ ∆x), and that the register and storage loops are made of the same fiber, then all pulses will

deform equally over time, so pulse distinguishability is not an issue. The limiting factor will therefore

be the dispersive length over which a pulse will broaden to the point where δx ∼ ∆x. Commercially

available dispersion-shifted fibers allow for simultaneous low attenuation of ∼ 0.2 dB/km and low

dispersion of ∼ 4 ps/nm/km at λ = 1550 nm. If we assume a bin size of ∆x = 20 cm (time bin size

of 1 ns), a pulse length of δx = 2 cm, and we saturate the uncertainty limit ∆λ = λ2/4πδx, then this

dispersive length is approximately 26000 km of fiber. At these distances, attenuation losses would

certainly dominate, so we can safely ignore dispersive errors.



Appendix E

Simulator for quantum networks

and channels

In this Appendix, we describe the open-source distributed quantum network simulation framework

SQUANCH (Simulator for Quantum Networks and Channels) used to perform many of the quantum

gate simulations in Chapters 4 and 5. The framework includes many features of a general-purpose

quantum computing simulator, but it is optimized specifically for simulating quantum networks.

It includes functionality to allow users to easily design complex multi-party quantum networks,

extensible classes for modeling noisy quantum channels, and a multiprocessed NumPy backend for

performant simulations. We present an overview of the structure of the library, describing how

the various API elements represent the underlying physics and providing simple usage examples for

each module. Finally, we present several demonstrations of canonical quantum information protocols

implemented using this framework.

In Section E.1 we give a brief primer on quantum information and introduce quantum agents,

channels, and networks. In Section E.2, we present an overview of the SQUANCH framework. We first

present the classes that represent quantum information, detailing the QSystem, Qubit, QStream,

and Gates modules. Next, we describe the higher-abstraction components which are used to build

the nodes and connections of a quantum network: Agents, Channels, and Errors. We provide

pedagogical demonstrations throughout each of these discussions. Finally, in Section E.3, we show a

series of more sophisticated demonstrations of canonical quantum information protocols implemented

with the framework.

151
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E.1 Preliminaries

In this section, we give a brief primer on quantum computation1, reviewing some of the concepts

necessary to understand the SQUANCH framework. In Section E.1.5, we also provide some basic

formalism for describing quantum networks and channels. We encourage readers with familiarity in

these topics to skip to Section E.2 for an overview of our platform. Throughout this section, a basic

knowledge of linear algebra and quantum mechanics is assumed.

E.1.1 Qubits and quantum systems

In quantum computation, information is stored in the state of a qubit2, the quantum generalization of

a classical bit. Physically, a qubit can be any two-level quantum system, such as spin or polarization.

The state3 of a qubit is a vector |ψ⟩ over C2 in a linear superposition of states |ψ⟩ = α |0⟩ + β |1⟩.
The amplitudes α, β ∈ C obey normalization, such that |α|2 + |β|2 = 1. The state vectors {|0⟩ , |1⟩}
(physically, the eigenstates of the logical observable) form the computational basis which spans the

two-dimensional Hilbert space B containing |ψ⟩. If a measurement is performed on the qubit state,

the state collapses to |0⟩ or |1⟩, “returning” a classical bit 0 or 1, with probability |α|2 or |β|2,
respectively.

A collection of qubits forms a multi-particle quantum system. The state of an N -qubit quantum

system lives in a 2N -dimensional Hilbert space HN and can be represented by a state vector:

|Ψ⟩ ∈ HN ≡
1⊗

k=N

Bk, (E.1)

where
⊗1

k=N denotes a rightward tensor product ordered as k = N,N − 1, · · · , 1 and Bk is the

state space for each constituent qubit. The system state space HN is spanned by the product

of the qubit eigenstates
⊗1

k=N |qk⟩, for qk ∈ {0, 1}. These basis vectors are (also) referred to as

the computational basis for the N -qubit system; they can be written as |q1q2 · · · qN ⟩ and have the

same lexicographic ordering as their binary representations (e.g. |00⟩ , |01⟩ , |10⟩ , |11⟩ for a two-qubit

system).

In general, a multi-qubit state |Ψ⟩ cannot be represented as the tensor product of the states of

its qubits; that is:

|Ψ⟩ ≠ |ψ1⟩ ⊗ |ψ2⟩ ⊗ · · · ⊗ |ψN ⟩ , (E.2)

so the state of each qubit is generally not independent of other qubits. (If |ψ⟩ does take this form, it is

1For an excellent in-depth review of this topic, we direct readers to the canonical textbook in quantum computation
by Nielsen and Chuang [168].

2There are in fact multiple equivalent models of quantum computation. The prevailing model represents informa-
tion with qubits, but other models can use discrete k-level quantum systems (qudits), or even continuous quantum
variables, as detailed in [114].

3What we refer to as the “state” is more correctly the projection of the quantum state onto the basis of the
observable in question.
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called a separable state.) This non-local correlation between quantum states is called entanglement.

The massive parallelism of quantum computation is due to superposition and entanglement, as they

allow the size of the state space of a quantum system to scale exponentially with the number of

qubits. By cleverly exploiting superposition and entanglement, quantum algorithms can achieve

polynomial [86] or even exponential [229] speedup over classical algorithms for important problems.

E.1.2 Open quantum systems

The states for quantum systems described in Section E.1.1 are pure states, which encode all that

can be known about a quantum system. However, in many cases, the full quantum state is not

accessible to an observer (for example, if the system is a subset of a larger quantum system or if

the state is coupled to the environment). In this case, the available quantum state is a statistical

mixture of pure states |Ψj⟩, each with probability pj , which can be represented by a density matrix

ρ̂:

ρ̂ =
∑

j

pj |Ψj⟩⟨Ψj |. (E.3)

If a quantum system with (pure) state |Ψ⟩ is divided into two subsystems A and B, spanned

by orthonormal bases {|αi⟩} and {|βj⟩}, respectively, then |Ψ⟩ =
∑
ij |αi⟩ |βj⟩ can equivalently be

expressed by the density matrix:

ρ̂ = |Ψ⟩⟨Ψ| =
∑

ij

∑

i′j′

cijc
∗
i′j′ |αi⟩ |βj⟩ ⟨αi′ | ⟨βj′ | . (E.4)

If an observer only has access to subsystem A, then their (mixed) state ρ̂A is given by the partial

trace over all inaccessible degrees of freedom (that is, B):

ρ̂A = trB ρ̂ =
∑

j

⟨βj | ρ̂ |βj⟩ . (E.5)

If a measurement of ρ̂ can yield possible outcomes of {|j⟩}, then the probability of each outcome

is given by pj = tr [ρ̂|j⟩⟨j|] and the measurement collapses the state as:

ρ̂ 7→ ρ̂j =
|j⟩⟨j|ρ̂|j⟩⟨j|†

pj
. (E.6)

E.1.3 Quantum gates

Just as classical algorithms can be represented as a sequence of Boolean logic gates4, quantum

algorithms use quantum gates to manipulate the states of quantum systems. A quantum gate for

4More precisely, a Turing machine with arbitrary but finite memory can be constructed from a functionally complete
set of logic gates.
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an N -qubit system is a unitary operator U ∈ U(2N ); when applied to a quantum state ρ̂, the gate

modifies the state as ρ̂ 7→ Uρ̂U†.

If a gate acts on a subset of a larger quantum system, their matrix representations are “padding”

with the identity operator. For example, if ρ̂ represents an N -qubit system, and a single-qubit gate

U is applied to qubit k, then the state transforms as:

ρ̂ 7→ Ukρ̂ U
†
k : Uk ≡ 1N ⊗ · · · ⊗ U ⊗ 1k−1 ⊗ · · · ⊗ 11, (E.7)

where 1j denotes identity applied to the jth qubit. Quantum gates are commonly described pic-

tographically with quantum circuit diagrams, such as the one in Figure E.1, which depicts the

transformation in Equation E.7. A list of circuit symbols for built-in gates included in SQUANCH is

provided in Section E.5.3.

q1 q1

q2 q2

ρ̂

...
Ukρ̂ U

†
kqk U qk

...
qN qN









Figure E.1: Circuit diagram for applying the single-qubit gate U to qubit qk. Wires implicitly
denote tensor products with identity.

It is straightforward to define many (and in fact, using SWAP, all) multi-qubit gates using a similar

strategy as in Equation E.7. For example, the controlled-X or CNOT gate, common for constructing

entanglement in a quantum system, has a matrix representation for a two-qubit system:

CNOT ≡




1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


 . (E.8)

Equivalently, we can define the gate CNOTjk acting on control qubit j and target qubit k in an

N -qubit system as:

CNOTjk ≡ |0⟩⟨0|j ⊗ 1k + |1⟩⟨1|j ⊗ σx;k, (E.9)

where σx;j is Pauli-X applied to qubit j and padding with identity is implicit.5

5For the remainder of this paper, we adopt the convention that a k-qubit operator Ω acting on qubits i1 · · · ik is
notated Ωi1···ik and implicitly includes ordered tensor products with 1j for j ̸∈ {i1 · · · ik}.
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E.1.4 Quantum agents

Algorithms for transmitting and manipulating quantum information are frequently explained in

terms of a colorful cast of characters starring Alice and Bob. In the SQUANCH framework, these

“quantum actors” are represented by Agents. An agent has a set of classical and quantum channels

connecting it to other agents, classical memory, which can store arbitrary data, and quantum mem-

ory, which is an array of qubits. It also has runtime logic in the form of a classical program with

access to operations that can manipulate quantum information, such as gates and measurement. For

completeness, a formal definition of a quantum agent is given in Section E.5.2.

E.1.5 Quantum networks and channels

In this section, we provide some formalism to define quantum channels and quantum networks as

used in our simulation framework.

Conceptually, a quantum channel is a communication channel which transmits quantum informa-

tion (qubits) and an associated noise model6 N which modifies the qubits, generally through coupling

to the environment. Mathematically, N is a linear completely-positive trace-preserving map which

acts on a composite state consisting of the input quantum state state ρ̂in and the environment ξ̂in

(assumed by convention to be in the initial state |0⟩⟨0|). [87]

ρ̂in
N

ρ̂out

ξ̂in ξ̂out

Figure E.2: Circuit diagram representing a quantum channel N . Frequently, the coupling of the
channel to the environment is assumed and not explicitly drawn, as in Figure E.11.

While qubits are in the channel, the state of the composite system undergoes unitary evolution

as ρ̂in ⊗ ξ̂in 7→ U
(
ρ̂in ⊗ ξ̂in

)
U†, which can allow information to “leak” from the system ρ̂ to the

environment ξ̂. After the qubit is retrieved from the channel, the output state ρ̂out is given by

tracing over inaccessible environmental degrees of freedom [87]:

ρ̂out = N (ρ̂in) = trξ

[
U
(
ρ̂in ⊗ ξ̂in

)
U†
]
. (E.10)

We direct readers to papers by Gyongyosi, et al., for in-depth discussions of the properties [87]

and capacities [88] of quantum channels.

Finally, a quantum network can be defined7 as a directed graph N = (A,C), where A is a set

6Most common definitions of a quantum channel define the channel as the noise model N itself; as before, we make
the distinction to mirror the codebase structure.

7Quantum networks generally lack the standard definition that quantum computers or quantum channels have.
We provide a formal definition here for completeness, but it should not be interpreted as authoritative.
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of agents and C is a set of quantum and classical channels8. Other practical network components,

such as quantum repeaters [14], can be modeled (both mathematically and programmatically) as

quantum agents.

E.2 Framework overview

Figure E.3: Schematic overview of the modules available in the SQUANCH framework, with an
illustration in the lower left showing how quantum streams and states are represented. The QSystem
is the most fundamental class, representing a multi-particle quantum state as a density matrix.
Ensembles of quantum systems are efficiently handled by QStreams, and each QSystem has references
to its constituent Qubits. Functions in the Gates module can be used to manipulate the state of a
quantum system. Agents are generalized quantum-mechanical “actors” which are initialized from a
QStream instance and can alter the state of the quantum systems in their stream object, typically by
interacting directly with Qubits. Agents run in parallel from separate processes and are connected
by quantum and classical Channels, which apply customizable Error models to the transmitted
information and synchronize agent clocks.

SQUANCH9 is a Python-based framework for simulating the dynamics of quantum networks and

provides an intuitive, object-oriented API for representing and manipulating ensembles of separable

quantum systems. A schematic overview of the SQUANCH framework is depicted in Figure E.3. In

this section, we describe the structure of the framework, detailing the modules to represent and

manipulate quantum information and to define and simulate quantum networks.

8Since our definition of a quantum agent includes a list of channels, explicitly including C in the definition is
redundant but adds clarity.

9This manuscript refers to SQUANCH version 1.1.0, available at github.com/att-innovate/squanch or from the
Python Package Index using pip install squanch. Documentation is available at att-innovate.github.io/squanch.

github.com/att-innovate/squanch
att-innovate.github.io/squanch
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E.2.1 Working with quantum information

QSystems and Qubits

The most fundamental class in the framework is the QSystem, which represents the state of a multi-

body, maximally entangleable quantum system. The state of each qubit |ψk⟩ of a quantum system

is represented in the abstract computational basis10 Bk spanned by {|0⟩k , |1⟩k}, and the state of the

system as a whole is represented by a density matrix, which is implemented in memory as a NumPy

array of np.complex64 values.

A QSystem contains a QSystem.qubits generator,11 which enumerates the qubits of the quantum

system. Each qubit is represented by a Qubit object, a lightweight wrapper class containing only a

reference to the parent QSystem and the index of the qubit within the system12.

Qubit and QSystem objects contain methods for simulating qubit measurement in the computa-

tional basis, as described in Sections E.1.1 and E.1.2. Qubit.measure() calls QSystem.measure qubit(index),

which returns a bit value for the result of the measurement. Measurement of qubit k partially

collapses the system state ρ̂ by choosing a random outcome |ψk⟩ = |i⟩ with probability pi;k =

tr [ρ̂ (|i⟩⟨i|)k] for i ∈ {0, 1}, modifying the state according to Equation E.6.

QSystems also contain a method, QSystem.apply(), for applying an N -dimensional unitary

operator to modify the system state. In practice, this method is rarely used, as qubits can be more

intuitively manipulated using functions in the gates module, which provides a set of common single-

and multi-qubit quantum logic gates.

Quantum gates

Quantum gates are implemented as standard Python functions which take one or more Qubits

as arguments, return nothing, and call Qubit.apply() or QSystem.apply() to apply a unitary

operator to the quantum state. A list of natively-included gates is provided in Section E.5.3. The

corresponding N -qubit operator (as described in Section E.1.3) for each gate is lazily evaluated,

cached, and applied directly to the the parent QSystem.state, modifying its density matrix in-

place. A simple example of state preparation and measurement using built-in gate functions is

demonstrated13 in Program E.1.

qsys = QSystem(2) # create a two-qubit system

q1, q2 = qsys.qubits # enumerate the qubits

H(q1) # Hadamard on qubit 1

10See Section E.1.1 for more detail.
11Generators are used instead of lists for performance reasons, although they do introduce a small number of

peculiarities in the code, which are discussed in the documentation.
12If the parent system is part of a QStream, the Qubit will also contain an index for the location of the system

within the stream.
13For the remainder of this paper, we assume that all programs are run with the standard import statements of

import numpy as np, import matplotlib.pyplot as plt, and from squanch import *.
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CNOT(q1, q2) # Control-NOT of q1 on q2

bit1 = q1.measure() # measure the qubits

bit2 = q2.measure()

assert bit1 == bit2

Program E.1: Preparing and measuring the entangled state |+⟩ = 1√
2
(|00⟩+ |11⟩). The measure-

ment results bit1 and bit2 will always be equal.

Additional gates can be added through compositions of existing gates, which can approximate

any unitary operator with arbitrary accuracy [18], or by directly writing a function to implement

the gate operation. As an example, consider the quantum Fourier transform [168], which operates

on the 2N lexicographically-enumerated N -qubit basis states {|j⟩ , |k⟩ ∈⊗1
k=N Bk} as:

∑

j

αj |j⟩ 7→
∑

k


 1√

2N

2N−1∑

n=0

e
2πikn

2N αn


 |k⟩ . (E.11)

This operation can be implemented iteratively with the quantum circuit depicted in Figure E.4.

q0 H ϕ2 ϕ3 ϕN yN−1

q1 • H ϕ2 ϕN−1 yN−2

q2 • • H ϕN−2 yN−3

...
. . .

. . .
. . .

...

qN−1 • • • H y0

Figure E.4: Circuit implementation of a quantum Fourier transform. ϕm denotes the phase gate(
1 0
0 ωm

)
, where ωm ≡ e

2πi
2m is a primitive root of unity.

Programmatically implementing this relatively complicated quantum circuit is straightforward

in SQUANCH, as demonstrated in Program E.2.

def QFT(qubits):

'''Applies quantum Fourier transform to inputs'''

N = len(qubits)

for n in range(N, 0, -1):

target = qubits[N - n]

H(target)

for m in range(1, n):

CPHASE(qubits[N - n + m], target, 2*np.pi/2**(m+1))

Program E.2: Implementing the quantum Fourier transform using built-in gates. The CPHASE

operator is the controlled-phase gate, which acts as the identity if the control qubit is in state |0⟩
and maps |0⟩ → |0⟩ and |1⟩ → eiϕ |1⟩ if the control qubit is in state |1⟩.
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QStreams – performant quantum ensembles

An ensemble of separable quantum systems, such as one million Bell pairs, is represented by a

“quantum stream”, or QStream, which stores the collective state of its QSystems in a contiguous

block of pre-allocated memory to optimize cache locality. A QStream is instantiated from two

dimensions: the number of qubits in each quantum system, and the number of systems in the stream.

The QStream is an iterable Python object, and most simulations will contain an iteration over the

quantum systems in the stream. To minimize overhead, QSystems can be quickly instantiated from

an existing section of the QStream.state array.

By default QStream state is stored in a shared memory as a C-type array of doubles, which

is type-casted as a 3D array of np.complex64 values. Storing the state in shared memory allows

multiple agents to work in parallel. For performance reasons, there is no explicit concurrency

safety when a system is modified by multiple agents, as sending and receiving Qubits are blocking

operations which allow for naturally safe parallelism.

E.2.2 Simulating quantum networks

The top-level classes that provide the greatest abstraction are Agents and Channels, which imple-

ment the nodes and connections in a quantum network, respectively.

Agents – Alice and Bob in code

An Agent generalizes the notion of an actor (e.g. Alice, Bob) that can send, receive, store, and

manipulate classical and quantum information. We provide a formal definition for a quantum agent

in Section E.1.4; the structure of the Agent class mirrors this definition.

Agents are instantiated from a QStream object, and each Agent has a classical memory, which

can store arbitrary Python objects, a quantum memory, which stores incoming qubits and can be

modified to simulate error models. Agents have a processor in the form of a run() method that

implements runtime logic. Additionally, Agents maintain internal clocks which are updated when

sending or receiving information to each other; this allows users to roughly quantify the performance

of various networking protocols in terms of simulated elapsed time. During simulations, Agents run

in parallel from separate processes, synchronizing clocks and passing information between each other

through Channels using qsend/qrecv and csend/crecv.

A typical workflow for creating a quantum network simulation using Agents is:

1. Define the runtime logic for each agent class. This usually involves an iteration over self.qstream,

calls to send and receive information to/from other agents, and a call to output the results of

the simulation to the main process using self.output(<objects>).

• If the agent is a “sender”, the runtime logic typically iterates for qsystem in self.qstream,

followed by procedures to manipulate and transmit the qubits of qsystem.



APPENDIX E. SIMULATOR FOR QUANTUM NETWORKS AND CHANNELS 160

• If the agent is a “receiver”, the runtime logic is usually for in self.qstream: qubit

= self.qrecv(<other agent>), followed by processing and output procedures.

• Of course, mixtures of both formats may be used.

2. Create and format a QStream object. State preparation may be done as part of the agent logic

or in the main process.

3. Create an output dictionary (e.g. out = Agent.shared output()) and make instances for

each agent class from the quantum stream (e.g. alice = Alice(qstream, out)).

4. Define the structure of the network by connecting agent instances using alice.qconnect(bob)

and/or alice.cconnect(bob), optionally specifying the channel model(s) to use.

5. Run the simulation using Simulation(alice, bob, ...).run() and post-process and visu-

alize the output data. Output results for each agent will be returned to corresponding value

in the previously created out dictionary (e.g. alice out = out["Alice"]).

This general program structure is demonstrated in Program E.3.

class Alice(Agent):

'''Alice sends states to Bob and receives results'''

def run(self):

measurements = []

for i, qsys in enumerate(self.qstream):

q = qsys.qubit(0)

if (i % 2 == 0): X(q) # flip even qubits

self.qsend(bob, q)

result = self.crecv(bob)

measurements.append(result)

self.output({"meas": measurements,

"t": self.time})

class Bob(Agent):

'''Bob measures Alice's states and sends outcomes'''

def run(self):

for _ in self.qstream:

q = self.qrecv(alice)

self.csend(alice, q.measure())

self.output({"t": self.time})

# Set up QStream and Agent instances
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qstream = QStream(1, 10)

out = Agent.shared_output()

alice = Alice(qstream, out)

bob = Bob(qstream, out)

# Connect agents with classical and quantum channels

alice.qconnect(bob)

alice.cconnect(bob)

# Run the simulation

Simulation(alice, bob).run()

print("Measurements: {}".format(out["Alice"]["meas"]))

# >> Measurements: [1, 0, 1, 0, 1, 0, 1, 0, 1, 0]

Program E.3: A simple quantum network “ping” protocol implemented using agents. Alice pre-
pares single-qubit states to send to Bob, who measures them and replies with the outcomes.

Channels – imperfect communication lines

Classical and quantum channels, which are derived from the CChannel and QChannel base classes,

represent noisy information channels physically connecting distant nodes in a network. A formal

definition of a quantum channel is provide in Section E.1.5; a practical example would be a fiber optic

line with a specified length and attenuation coefficient. Functionally, Channels are multiprocessed

queues that allow routines to communicate between processes. Channels track transmission times

and speed-of-light delays (through an optional length parameter which can specify the physical size

of the channel in kilometers) and apply customizable error models to the transmitted information.

Quantum error models are implemented by extending the base QError class, which maintains a

reference to the parent channel and has a single apply(qubit) method to apply the error model to

a transmitted qubit. An implementation of a simple quantum error model is shown in Program E.4.

class SimpleError(QError):

def apply(self, qubit):

'''Flip the qubit with 50% probability'''

if np.random.rand() < 0.5:

X(qubit)

return qubit

class SimpleQChannel(QChannel):

def __init__(self, *args, **kwargs):

QChannel.__init__(self, *args, **kwargs)
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self.errors = [SimpleError(self)]

# Set up QStream and Agent instances

qstream = QStream(1, 10)

out = Agent.shared_output()

alice = Alice(qstream, out)

bob = Bob(qstream, out)

alice.pulse_length = 10e-9 # 10ns pulse length

bob.pulse_length = 10e-9

# Connect agents with new model, specify 1km length

alice.qconnect(bob, SimpleQChannel, length=1.0)

alice.cconnect(bob, length=1.0)

# Run the simulation

Simulation(alice, bob).run()

alice_out, bob_out = out["Alice"], out["Bob"]

print("Alice's time: {}".format(alice_out["t"]))

print("Bob's time: {}".format(bob_out["t"]))

print("Measurements: {}".format(alice_out["meas"]))

# >> Alice's time: 8.761114076050701e-05

# >> Bob's time: 8.427558372248166e-05

# >> Measurements: [0, 1, 0, 0, 1, 1, 0, 1, 0, 1]

Program E.4: An extension of the quantum “ping” protocol from Program E.3 which adds sim-
ple quantum error models to the network. (Alice and Bob are defined as before.) Agent timing
functionality is also demonstrated given a specified channel length of 1km.

E.3 Demonstrations

Finally, in this section we present several demonstrations of canonical experiments and protocols

involving quantum information. For brevity, we omit code for plotting or displaying images and

assume standard imports. The SQUANCH documentation website (see Section E.5.1) contains the full

source code for each demonstration, along with more detailed step-by-step explanations.

E.3.1 Quantum teleportation

Quantum teleportation allows two parties that share an entangled pair to transfer an arbitrary

quantum state using only classical communication [27]. This process has tremendous applicability
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to quantum networks, transferring fragile quantum states between distant nodes. Conceptually,

quantum teleportation is the inverse of superdense coding.

In general, all quantum teleportation experiments have the same underlying structure. Two dis-

tant parties, Alice and Bob, are connected via a classical information channel and share a maximally

entangled state. Alice has an unknown state |ψ⟩ which she wishes to send to Bob. She performs a

joint projective measurement of her state and her half of the entangled state and communicates the

outcomes to Bob, who operates on his half of the entangled state accordingly to reconstruct |ψ⟩. In
this demo, we’ll implement the canonical two-party quantum teleportation protocol:

1. Alice generates an entangled two-particle state |AB⟩ = 1√
2
(|00⟩+ |11⟩), keeping half of the

state and sending the other half to Bob.

2. Alice entangles her qubit |ψ⟩ with her ancilla |A⟩ by applying controlled-not and Hadamard

operators.

3. Alice jointly measures |ψ⟩ and |A⟩ and communicates the outcomes to Bob through a classical

channel. Bob’s qubit is now in one of four possible Bell states, one of which is |ψ⟩, and he will

use Alice’s two bits to recover |ψ⟩.

4. Bob applies a Pauli-X operator to his qubit if Alice’s ancilla A collapsed to |1⟩, and he applies

a Pauli-Z operator to his qubit if her state |ψ⟩ collapsed to |1⟩. He has thus transformed

|B⟩ 7→ |ψ⟩.

This protocol is illustrated in the circuit diagram shown in Figure E.5.

|ψ⟩ • H Alice

A H •

B

• Bob

•

B Z |ψ⟩

Figure E.5: Circuit diagram for the two-party quantum teleportation simulation described above.

For this demonstration, we’ll prepare an ensemble of qubits in the state |qθ⟩ = RX(θ) |0⟩ for
various values of θ ∈ [0, 2π] and compare the expected and observed outcomes. (See Section E.5.3

for the definition of RX(θ).) The results of the simulated experiment are shown in Figure E.6.
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class Alice(Agent):

'''Alice teleports qubits to Bob'''

def distribute_bell_pair(self, a, b):

# Create a Bell pair and send half to Bob

H(a)

CNOT(a, b)

self.qsend(bob, b)

def teleport(self, q, a):

# Perform the teleportation

CNOT(q, a)

H(q)

# Tell Bob what to do over classical channel

apply_x = a.measure()

apply_z = q.measure()

self.csend(bob, [apply_x, apply_z])

def run(self):

for qsystem in self.qstream:

q, a, b = qsystem.qubits

self.distribute_bell_pair(a, b)

self.teleport(q, a)

class Bob(Agent):

'''Bob receives Alice's qubit and measures it'''

def run(self):

measurement_results = []

for _ in self.qstream:

# Bob receives a qubit from Alice

b = self.qrecv(alice)

# Bob receives classical instructions

apply_x, apply_z = self.crecv(alice)

if apply_x: X(b)

if apply_z: Z(b)

# Measure the output state

measurement_results.append(b.measure())

# Put results in output object

self.output(measurement_results)

angles = np.linspace(0, 2 * np.pi, 50) # R_X angles
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num_trials = 250 # number of trials for each angle

# Prepare the initial states in the stream

qstream = QStream(3, len(angles) * num_trials)

for angle in angles:

for _ in range(num_trials):

q, _, _ = qstream.next().qubits

RX(q, angle)

# Make agent instances and connect

out = Agent.shared_output()

alice = Alice(qstream, out = out)

bob = Bob(qstream, out = out)

alice.qconnect(bob)

alice.cconnect(bob)

# Run the simulation and plot the results (omitted)

Simulation(alice, bob).run()

Program E.5: Implementation of a two-party quantum teleportation experiment using SQUANCH.

Figure E.6: Observed and expected fractional populations of measurements resulting in |ψ⟩ → |1⟩
for the two-party quantum teleportation simulation with an ensemble size of 250.



APPENDIX E. SIMULATOR FOR QUANTUM NETWORKS AND CHANNELS 166

E.3.2 Superdense coding

Superdense coding is a process whereby two parties connected via a quantum channel and sharing an

entangled pair can send two classical bits of information using only a single qubit [28]. Conceptually,

superdense coding is the inverse of quantum teleportation.

In this demonstration, we’ll implement the three-party superdense coding protocol depicted in

the circuit diagram in Figure E.7. Charlie distributes entangled particles to Alice and Bob. Alice

encodes her information in her particles and sends them to Bob, who decodes the information by

matching Alice’s qubits with his half of the shared state received from Charlie. More precisely:

1. Charlie generates entangled pairs in the state |AB⟩ = 1√
2
(|00⟩+ |11⟩) and sends one particle

to Alice and the other to Bob.

2. Alice has a number of bits she wishes to send to Bob. For each pair, she encodes her two

bits b1 and b2 in the relative sign and phase of her qubit by conditionally applying σz and σx,

respectively. She then sends the modified qubit to Bob.

3. Bob disentangles the X and Z components of the qubit by applying CNOT and H to the qubits

he received from Alice and from Charlie. He then measures each qubit to obtain b1 and b2,

respectively.

Alice
b1 •
b2 •

Z

|0⟩ H • Charlie

|0⟩
Bob

• H b1

b2

Figure E.7: Circuit diagram for the three-party quantum superdense coding experiment described
above.

For this demonstration, Alice will send data to Bob in the form of a serialized bitstream represent-

ing an image. We’ll use the built-in timing functionality to track the simulated time for each agent to

complete their part of the protocol. Since superdense coding could be used as a networking protocol

in the foreseeable future, even very rudimentary simulated timing data could be useful to quantify
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the performance of the algorithm, especially if data validation and error correction through multiple

transmission attempts is simulated. We assume a photon pulse interval of 1ns and a spatial sepa-

ration between Alice and Bob of 1km, with Charlie at the midpoint. All agents are connected with

the FiberOpticQChannel model, which simulates 0.16 dB
km attenuation errors by randomly changing

transmitted Qubits to None.

import matplotlib.image as image

class Charlie(Agent):

'''Charlie sends Bell pairs to Alice and Bob.'''

def run(self):

for qsys in self.qstream:

a, b = qsys.qubits

H(a)

CNOT(a, b)

self.qsend(alice, a)

self.qsend(bob, b)

self.output({"t": self.time})

class Alice(Agent):

'''Alice sends Bob superdense-encoded bitstream'''

def run(self):

for _ in self.qstream:

bit1 = self.data.pop(0)

bit2 = self.data.pop(0)

q = self.qrecv(charlie)

# qubit could be lost to attenuation

if q is not None:

if bit2 == 1: X(q)

if bit1 == 1: Z(q)

self.qsend(bob, q)

self.output({"t": self.time})

class Bob(Agent):

'''Bob reconstructs Alice's data '''

def run(self):

bits = []

for _ in self.qstream:

a = self.qrecv(alice)

c = self.qrecv(charlie)
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if a is not None and c is not None:

CNOT(a, c)

H(a)

bits.extend([a.measure(), c.measure()])

else: # if qubits are lost

bits.extend([0,0])

self.output({"t": self.time, "bits": bits})

# Load an image and serialize it to a bitstream

img = image.imread("../docs/source/img/foundryLogo.bmp")

bitstream = list(np.unpackbits(img))

# Initialize QStream and Agents

qstream = QStream(2, int(len(bitstream) / 2))

out = Agent.shared_output()

alice = Alice(qstream, out, data = bitstream)

bob = Bob(qstream, out)

charlie = Charlie(qstream, out)

# Set 1ns photon transmission rate

alice.pulse_length = 1e-9

bob.pulse_length = 1e-9

charlie.pulse_length = 1e-9

# Connect the agents with simulated fiber optic lines

alice.qconnect(bob, FiberOpticQChannel, length=1.0)

charlie.qconnect(alice, FiberOpticQChannel, length=0.5)

charlie.qconnect(bob, FiberOpticQChannel, length=0.5)

Simulation(alice, bob, charlie).run()

# Print simulated time at end

print("Alice: {:.2e}s".format(out["Alice"]["t"])

print("Bob: {:.2e}s").format(out["Bob"]["t"])

print("Charlie: {:.2e}s").format(out["Charlie"]["t"])

# >> Alice: 4.16e-04s

# >> Bob: 4.20e-04s

# >> Charlie: 4.15e-04s

received_image = np.reshape(np.packbits(out["Bob"]["bits"]), img.shape)

Program E.6: Simulation of transmitting a serialized bitstream of an image via superdense coding.
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Figure E.8: Results of Program E.6, showing Alice’s original image (left), and Bob’s received image
(right). Bob applies no correction for attenuation errors, replacing dropped qubits with bit pairs of
(0, 0).

E.3.3 Man-in-the-middle attack

In this demo, we show how quantum networks can be resistant to interception (“man-in-the-middle”)

attacks by using a modified version of the superdense coding demonstration presented in Program

E.6. As in the previous demo, Charlie will distribute Bell pairs to Alice and Bob, and Alice will

attempt to send a classical message to Bob. However, a fourth party, Eve, will try to naively

intercept the message Alice sends to Bob. Eve will measure each qubit from Alice, record the result,

and re-transmit the qubit to Bob. This scenario is illustrated in the circuit diagram shown in Figure

E.9.

Alice
b1 •
b2 •

Z

|0⟩ H • Charlie Eve

|0⟩

Bob

• H b1

b2

Figure E.9: Circuit diagram demonstrating a naive interception attack on the superdense net-
working protocol demonstrated in Figure E.7. Eve’s meter represents measurement of a qubit and
transmission of a new qubit in the observed state.

This four-party quantum network scenario is simulated below in Program E.7.

import matplotlib.image as image

class Charlie(Agent):

'''Charlie sends Bell pairs to Alice and Bob'''
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def run(self):

for qsys in self.qstream:

a, b = qsys.qubits

H(a)

CNOT(a, b)

self.qsend(alice, a)

self.qsend(bob, b)

class Alice(Agent):

'''Alice tries to send a bitstream to Bob'''

def run(self):

for _ in self.qstream:

bit1 = self.data.pop(0)

bit2 = self.data.pop(0)

q = self.qrecv(charlie)

if q is not None:

if bit2 == 1: X(q)

if bit1 == 1: Z(q)

# Alice unknowingly sends the qubit to Eve

self.qsend(eve, q)

class Bob(Agent):

'''Bob receives Eve's intercepted data'''

def run(self):

bits = []

for _ in self.qstream:

a = self.qrecv(eve)

c = self.qrecv(charlie)

if a is not None and c is not None:

CNOT(a, c)

H(a)

bits.extend([a.measure(), c.measure()])

else:

bits.extend([0,0])

self.output(bits)

class Eve(Agent):

'''Eve naively tries to intercept Alice's message'''

def run(self):

bits = []
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for _ in self.qstream:

a = self.qrecv(alice)

if a is not None:

bits.append(a.measure())

else:

bits.append(0)

self.qsend(bob, a)

self.output(bits)

# Load an image and serialize it to a bitstream

img = image.imread("../docs/source/img/foundryLogo.bmp")

bitstream = list(np.unpackbits(img))

# Prepare QStream and Agent instances

qstream = QStream(2, int(len(bitstream) / 2))

out = Agent.shared_output()

alice = Alice(qstream, out, data = bitstream)

bob = Bob(qstream, out)

charlie = Charlie(qstream, out)

eve = Eve(qstream, out)

alice.qconnect(bob)

alice.qconnect(eve)

alice.qconnect(charlie)

bob.qconnect(charlie)

bob.qconnect(eve)

Simulation(alice, eve, bob, charlie).run()

Program E.7: A four-party interception attack scenario simulated using SQUANCH. This protocol
the same as Program E.6 except that Eve intercepts Alice’s transmitted qubits, measures them, and
re-transmits them to Bob.

Figure E.10: The results of the simulated interception attack simulated by Program E.7. Since
Eve only has access to half of the entangled |AB⟩ state, she recovers only random noise, and Bob’s
image is half-corrupted, alerting him to the presence of an eavesdropper.
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E.3.4 Quantum error correction

When qubits are transmitted over quantum channels, they are subject to a complex set of errors

which can cause them to decohere, depolarize, or be lost to the environment. For quantum informa-

tion transfer to be feasible, the information must be encoded in a error-resistant format using any of

a variety of quantum error correction models. In this demonstration, we show how to use SQUANCH’s

channel and error modules to simulate quantum errors in a transmitted message, which we correct

for using the Shor Code, shown as a circuit diagram in Figure E.11. This error correction model

encodes a single logical qubit into the product of 9 physical qubits and is capable of correcting for

arbitrary single-qubit errors.

Alice Bob

|ψ⟩ • • H • •

E

• • H • • |ψ⟩
|0⟩ •
|0⟩ •
|0⟩ H • • • • H •
|0⟩ •
|0⟩ •
|0⟩ H • • • • H •
|0⟩ •
|0⟩ •

Figure E.11: Circuit diagram of encoding and decoding qubits using the Shor code. E represents
a quantum channel with an error model which can corrupt a single physical qubit by applying a
random unitary operator.

In this demo, we have two pairs of agents: Alice and Bob will communicate a message which

is error-protected using the Shor code, and DumbAlice and DumbBob will transmit the message

without error correction. Formally, for each state |ψ⟩ to be transmitted through the channel, the

following procedure is simulated:

1. Alice has some state |ψ⟩ = α0 |0⟩ + α1 |1⟩, which she wants to send to Bob through a

noisy quantum channel. She encodes her single-qubit state in nine logical qubit as |ψ⟩ 7→
α0

⊗3
j=1

1√
2
(|000⟩+ |111⟩) + α1

⊗3
k=1

1√
2
(|000⟩ − |111⟩) using the circuit diagram in Figure

E.7.

2. DumbAlice wants to send the same state, but she doesn’t error-protect the state and transmits

the unencoded state |ψ⟩ ⊗ |00 · · · 0⟩.

3. Alice and DumbAlice send their qubits through the quantum channel E to Bob and DumbBob,
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respectively. The channel may apply an arbitrary unitary operation to a single physical qubit

in each group of nine.

4. Bob receives Alice’s qubits and decodes them using the Shor decoding circuit shown in Figure

E.11.

5. DumbBob expects |ψ⟩ ⊗ |00 · · · 0⟩ from DumbAlice and only measures the results of the the

first qubit in each group of nine.

Transmitting an image is unsuitable for this scenario due to the larger size of the Hilbert space

involved compared to the previous two demonstrations. (Each QSystem.state for N = 9 uses

2097264 bytes, compared to 240 bytes for N = 2.) Instead, Alice and DumbAlice will transmit the

bitwise representation of a short message encoded as σz-eigenstates, and Bob and DumbBob will

attempt to re-assemble the message.

Since this demonstration is fairly long, we’ll split the code into two parts. First, we define the

Shor encoding and decoding circuits as ordinary Python functions:

def shor_encode(qsys):

# psi is state to send, q1...q8 are ancillas

psi, q1, q2, q3, q4, q5, q6, q7, q8 = qsys.qubits

CNOT(psi, q3)

CNOT(psi, q6)

H(psi)

H(q3)

H(q6)

CNOT(psi, q1)

CNOT(psi, q2)

CNOT(q3, q4)

CNOT(q3, q5)

CNOT(q6, q7)

CNOT(q6, q8)

return psi, q1, q2, q3, q4, q5, q6, q7, q8

def shor_decode(psi, q1, q2, q3, q4, q5, q6, q7, q8):

CNOT(psi, q1)

CNOT(psi, q2)

TOFFOLI(q2, q1, psi)

CNOT(q3, q4)

CNOT(q3, q5)

TOFFOLI(q5, q4, q3)

CNOT(q6, q7)
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CNOT(q6, q8)

TOFFOLI(q7, q8, q6)

H(psi)

H(q3)

H(q6)

CNOT(psi, q3)

CNOT(psi, q6)

TOFFOLI(q6, q3, psi)

return psi # psi is now the original state

Program E.8: Implementation of the nine-qubit Shor code in SQUANCH.

Assuming that the functions defined in Program E.8 are imported, we can define the agent logic

and quantum channel model in Program E.9.

import copy

from scipy.stats import unitary_group

# Agent runtime logic

class Alice(Agent):

'''Alice sends an error-protected state to Bob'''

def run(self):

for qsys in self.qstream:

# send the encoded qubits to Bob

for qubit in shor_encode(qsys):

self.qsend(bob, qubit)

class DumbAlice(Agent):

'''DumbAlice sends unencoded state to DumbBob'''

def run(self):

for qsys in self.qstream:

for qubit in qsys.qubits:

self.qsend(dumb_bob, qubit)

class Bob(Agent):

'''Bob receives and error-corrects Alice's state'''

def run(self):

measurements = []

for _ in self.qstream:

# Bob receives 9 logical qubits from Alice

received = [self.qrecv(alice) for _ in range(9)]
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# Decode and measure the original state

psi_true = shor_decode(*received)

measurements.append(psi_true.measure())

self.output(measurements)

class DumbBob(Agent):

'''DumbBob gets DumbAlice's non-corrected state'''

def run(self):

measurements = []

for _ in self.qstream:

received = [self.qrecv(dumb_alice) for _ in range(9)]

psi_true = received[0]

measurements.append(psi_true.measure())

self.output(measurements)

# Define the quantum error model

class ShorError(QError):

'''Corrupt a random qubit with a random operator'''

def __init__(self, qchannel):

QError.__init__(self, qchannel)

self.count = 0

self.error_applied = False

def apply(self, qubit):

if self.count == 0: # corrupt 1/9 qubits max

self.error_applied = False

self.count = (self.count + 1) % 9

if not self.error_applied and qubit is not None:

if np.random.rand() < 0.5:

# apply random U(2) operation to qubit

random_unitary = unitary_group.rvs(2)

qubit.apply(random_unitary)

self.error_applied = True

return qubit

# Define quantum channel with the error

class ShorQChannel(QChannel):

def __init__(self, from_agent, to_agent):

QChannel.__init__(self, from_agent, to_agent)

self.errors = [ShorError(self)]
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# Helper function code omitted, see Appendix A

def to_bits(string):

'''Convert a string to a list of bits'''

def from_bits(bits):

'''Convert a list of bits to a string'''

# Prepare a message and encode as spin eigenstates

msg = "Peter Shor once lived in Ruddock 238! But who was Airman?"

bits = to_bits(msg)

qstream = QStream(9, len(bits))

for bit, qsystem in zip(bits, qstream):

if bit == 1:

X(qsystem.qubit(0))

# Alice and Bob will use error correction

out = Agent.shared_output()

alice = Alice(qstream, out)

bob = Bob(qstream, out)

alice.qconnect(bob, ShorQChannel)

# Dumb agents won't use error correction

qstream2 = copy.deepcopy(qstream)

dumb_alice = DumbAlice(qstream2, out)

dumb_bob = DumbBob(qstream2, out)

dumb_alice.qconnect(dumb_bob, ShorQChannel)

# Run everything and record results

Simulation(dumb_alice, dumb_bob, alice, bob).run()

dumb_bob_msg = from_bits(out["DumbBob"])

bob_msg = from_bits(out["Bob"]))

print("DumbAlice sent: {}".format(msg))

print("DumbBob received: {}".format(dumb_bob_msg))

print("Alice sent: {}".format(msg))

print("Bob received: {}".format(bob_msg)

Program E.9: Demonstration of quantum error correction using the Shor code.

The results of Program E.9 are shown in Figure E.12. (A screenshot is provided as Unicode

characters are problematic to include in LATEXdocuments.)
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Figure E.12: A screenshot of the output of Program E.9 running in a Jupyter notebook.
The original message can be recovered if a quantum error correcting protocol is used. Progress
bars are automatically updated from Agent.qstream. iter when running programs with
Simulation(...).run() and are shown in notebook or terminal environments.

E.4 Conclusions

In this appendix we have introduced SQUANCH, an open-source Python framework for creating dis-

tributed and performant simulations of multi-party quantum networks. The framework includes

modules for representing quantum information at the single-particle, multi-particle, and ensemble

levels, and large number of quantum gates for manipulating quantum information, enumerated in

full in Section E.5.3. The higher-abstraction modules in the framework provide software infrastruc-

ture for constructing the nodes of a quantum network by programming the actions of a quantum-

mechanical “agent” and for connecting the network with noisy information channels. Virtually all

components of the framework are configurable or extensible, allowing users to program simulations

ranging from simple demonstrations to complex and detailed computational models. We hope that

the development of this framework will stimulate exploration in the exciting field of quantum net-

working algorithms.

E.5 Appendix

E.5.1 Source code for simulator and demonstrations

The full source code for the SQUANCH framework is available on GitHub at github.com/att-innovate/

squanch or from the Python Package Index at pypi.org/project/SQUANCH. Documentation is avail-

able on the documentation website at att-innovate.github.io/squanch. The full source code for

each of the demonstrations in Section E.3 is available in the /demos directory of the GitHub repos-

itory.

E.5.2 Formal definition of a quantum agent

Our definition for a quantum agent is chosen to mirror the structure of the squanch.Agent class, but

is essentially a networked quantum Turing machine. A quantum agent is represented by a 5-tuple

github.com/att-innovate/squanch
github.com/att-innovate/squanch
pypi.org/project/SQUANCH
att-innovate.github.io/squanch
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(C,MC ,MQ, G, T ):

• C = (IC , IQ, OC , OQ) is a configuration of channels connecting the agent to other agents. IQ

and OQ are input and output quantum channels, through which the agent can receive and

send qubits, and IC and OC are input and output classical channels14.

• MC is the classical memory, where the kth bit is indexed as MC [k].

• MQ is the quantum memory, which can store an arbitrary number of qubits, where the kth

qubit is MQ[k]. Qubits received through IQ can be stored in MQ until they are sent through

OQ, and the measurement result of a qubit can be stored in MC .

• G is an arbitrary but finite15 set of quantum operations. In addition, we always include

“operators” for measurement and for sending qubits to a connected agent.

• A classical Turing machine16 T = (Q,Σ, δ) where:

– Q is a finite set of classical states

– Σ is a finite tape alphabet with a blank symbol

– δ : Q×Σ→ Σ×Q×{L,R}× {LQ, RQ}×G is a modified transition function which also

includes the traversal of quantum memory with {LQ, RQ} and the ability to perform an

operation g ∈ G on the current qubit.

In the non-networked case that C = (∅, ∅, ∅, ∅), the Agent has full access to the state space of

their quantum system, and this model is seemingly reducible to the definition of a quantum Turing

machine given in [30], although a formal proof of this is beyond the scope of this paper.

E.5.3 List of gates

A complete list of gates available in SQUANCH v1.1.0 is given below in Table E.1.

14Most definitions of quantum channels include the ability to transmit classical information; we make the explicit
distinction between quantum and classical channels here for better consistency with the structure of the squanch.Agent
class.

15Some gates, such as the PHASE gate, take parameters, which at first glance seems to make it problematic for the
transition function δ to be able to access them from a finite set. However, assuming G contains a functionally complete
set of quantum gates, compositions of g ∈ G can be used to approximate any unitary operator to within arbitrary
accuracy [18].

16This is not technically a Turing machine from a computability standpoint, since T has access to a random oracle
by way of the measurement operation.



APPENDIX E. SIMULATOR FOR QUANTUM NETWORKS AND CHANNELS 179

Operation Name Definition Symbol

H(qubit) Hadamard H = 1√
2

(
1 1
1 −1

)
H

X(qubit) Pauli-X σx =

(
0 1
1 0

)

Y(qubit) Pauli-Y σy =

(
0 −i
i 0

)
Y

Z(qubit) Pauli-Z σz =

(
1 0
0 −1

)
Z

RX(qubit, angle) Rotation-X Rx(θ) = cos θ
2
1− i sin θ

2
σx Rx(θ)

RY(qubit, angle) Rotation-Y Ry(θ) = cos θ
2
1− i sin θ

2
σy Ry(θ)

RZ(qubit, angle) Rotation-Z Rz(θ) = cos θ
2
1− i sin θ

2
σz Rz(θ)

PHASE(qubit, angle) Phase shift Rϕ =

(
1 0

0 eiϕ

)
Rϕ

CNOT(ctrl, targ) Controlled-NOT CNOTjk = |0⟩⟨0|j ⊗ 1k + |1⟩⟨1|j ⊗ σx;k
•

CPHASE(ctrl, targ, angle) Controlled-phase CPHASEjk(θ) = |0⟩⟨0|j ⊗ 1k + |1⟩⟨1|j ⊗ σx;k
•
Rϕ

CU(ctrl, targ, unitary) Controlled-unitary Cj(U)k = (|0⟩⟨0|)j ⊗ 1k + (|1⟩⟨1|)j ⊗ Uk
•
U

SWAP(qubit1, qubit2) SWAP gate SWAPjk = CNOTkjCNOTjkCNOTkj
×
×

TOFOLLI(ctrl1, ctrl2, targ) Toffoli gate CCNOTijk =
|0⟩⟨0|i|0⟩⟨0|j ⊗ 1k + |0⟩⟨0|i|1⟩⟨1|j ⊗ 1k+

|1⟩⟨1|i|0⟩⟨0|j ⊗ 1k + |1⟩⟨1|i|1⟩⟨1|j ⊗ σx;k

•
•

qubit.measure() Measurement ρ̂ 7→ ρ̂i =
|i⟩⟨i|ρ̂|i⟩⟨i|†
tr[ρ̂|i⟩⟨i|] , return bit i

Table E.1: A list of the built-in quantum operations included in SQUANCH as of version 1.1.0. All
gates take at least one Qubit argument and return nothing, modifying the state of the associated
QSystem in-place.



Appendix F

Computing photon scattering in

open quantum systems

This Appendix demonstrates a module I wrote for numerically computing photon scattering in

arbitrary driven systems coupled to some configuration of output waveguides using QuTiP [107]. I

have used this functionality for various calculations included in the main body of this thesis. This

Appendix is adapted from a Jupyter notebook tutorial available on the QuTiP website. We first

briefly review the generalized problem of photon scattering in quantum optical systems discussed in

Ref. [70].

F.1 Problem definition

Consider an arbitrary system with a Hamiltonian HS(t) coupled to a bath of waveguide modes, as

shown in Figure F.1.

The problem we address here is this: if we drive the system with some excitation field, such as

a laser pulse, how do photons scatter from the system into the waveguide?

The system Hamiltonians we will consider take the form

HS(t) =




H0S +H1S(t) if 0 < t < TP

H0S otherwise,
(F.1)

where TP is the pulse duration (if well-defined). The waveguide Hamiltonians can be described as

H0B =

∫ ∞

−∞
dωωb†ωbω, (F.2)

180

https://nbviewer.ipython.org/github/qutip/qutip-notebooks/blob/master/examples/temporal-photon-scattering.ipynb
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Figure F.1: The general problem is to compute the field scattered into unidirectional waveguide(s)
from an energy-nonconserving system Hamiltonian with a unique ground state. This class of Hamil-
tonian is often used to represent coherent laser pulses scattering off quantum-optical systems such
as a two-level system, Jaynes-Cummings system, or entangled photon pair source.

which can be rewritten in a temporal basis (roughly speaking, indexed by emission time) by Fourier

transforming the operators bω:

bτ ≡
∫ ∞

−∞

dω√
2π
e−iωτ bω, |τ⃗ (m)⟩ ≡ b†τ1 · · · b†τm |0B⟩ (F.3)

The total Schrodinger-picture Hamiltonian can be written as a sum of system, bath, and coupling

terms H(t) = HS(t) + V +H0B, and can be transformed into the interaction picture:

HI(t) = HS(t) + eiH0BtV e−iH0Bt. (F.4)

To solve the dynamics of this system, we could integrate the Schrodinger equation:

i
∂

∂t
|ΨI(t)⟩ = HI(t) |ΨI(t)⟩ . (F.5)

However, practically integrating this equation is not feasible, so we instead “coarse-grain” the

temporal dynamics to ∆t and take a continuous limit as ∆t→ 0.



APPENDIX F. COMPUTING PHOTON SCATTERING IN OPEN QUANTUM SYSTEMS 182

F.2 Coarse-grained dynamics and the scattering operator

If we define an “effective Hamiltonian” Heff(t) = HS(t)− iγ2a†a, we can generate an effective prop-

agator mapping the system from the kth to the k + 1th time bin which is correct up to O(∆t):

Ueff[k + 1, k] ≡ ⟨0k|U [k + 1, k] |0k⟩ ≈ exp

[
−i
∫ (k+1)∆t

k∆t

dtHeff(t)

]
. (F.6)

From this, we can derive the scattering operator for the system into the system of waveguides

(see the paper for more detail). For scattering of N photons into single waveguide, this operator〈
Ω̂†

−
〉
τ⃗(m)

takes the form:

〈
Ω̂†

−
〉
τ⃗(m)

= ⟨0S |Ueff(τmax, τm)

1∏

q=N

√
γaUeff(τq, τq−1) |ψS(0)⟩ , (F.7)

with τ0 = 0, τmax = max(Tp, τm). The multi-waveguide case will be discussed later in this Appendix.

F.3 The temporal basis

For a system coupled toW waveguides emitting N photons approximated by coarse-grained dynam-

ics with T time bins, the temporal basis described in Fischer, et al. (Eq. 138 and 153, with slight

notation changes) can be thought of as a system of T qubits for each of the W waveguides with a

total of N creation operators applied to |0⟩:

|τ⃗ (N)
(W )⟩ = |τ⃗

(w1)
1 , τ⃗

(w2)
2 , · · · , τ⃗ (wW )

W ⟩ =
N∏

i=1

b†wi,τ1b
†
wi,τ2 · · · b

†
i,τni
|0⟩ , (F.8)

where wk denotes scattering into the kth waveguide and ni denotes the maximum number of

photons scattered into some waveguide. Although this basis is exact, it has an intractable space

complexity of O(2T ·M ), making unsuitable for simulation work.

The temporal basis we use in the qutip.scattering module is more closely modeled after ladder

operators and explicitly restricts the basis to N emissions. To generate the basis, we make M copies

of the T time bins. Emission of a photon at the ith time bin into the wth waveguide is represented

by an entry in the (wT + i)th index of a (WT )-dimensional vector, so the overall temporal basis is

given by:

|τ⃗ (N)
(W )⟩ = |τ⃗

(w1)
1 , τ⃗

(w2)
2 , · · · , τ⃗ (wW )

W ⟩ =
N⊗

n=1

|τn,wn
⟩ =

N⊗

n=1

T⃗ [wnT + τn], (F.9)

where τn,wn denotes emission into the wnth waveguide of the nth photon and T⃗ [wnT+τn] denotes
the basis vector corresponding to τn,wn

, namely the (wnT + τn)-th index. The creation operators in
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the original temporal basis are mapped to (wiT+τn) applications of the “temporal ladder operator”:

b†wi,τn =
(a†)wiT+τn

√
(wiT + τn)!

(F.10)

This gives this basis a space complexity of O
(
(WT )N

)
, which is more manageable given that

for most applications T ≫W,N .

F.4 Single waveguide: driven quantum two-level system

To demonstrate the qutip.scattering module, we’ll start with the simplest case of a two-level

quantum system coupled to a single output waveguide. The system has initial state |ψ0⟩ = |e⟩sys ⊗
|vac⟩wg with a bare Hamiltonian of H0S = ω0σ

†σ. Adding an effective non-Hermitian term to govern

the evolution of the system under spontaneous emission, Heff = H0S − iγ2σ†σ. When the system is

driven by a coherent pulse, it undergoes Rabi oscillations. Picking a square pulse to give a simple

Hamiltonian, the overall effective Hamiltonian is Heff(t) = H0S −H1S(t)− iγ2σ†σ, where

H1S(t) =




Ω
(
ie−iω0tσ† − ieiω0tσ

)
if 0 < t < TP

0 otherwise.
(F.11)

We define the Hamiltonian and choose pulse parameters below.

# Pulse parameters

w0 = 10 * 2 * np.pi # arbitrary laser frequency

gamma = 1.0 # arbitrary coupling constant

# Operators

sm = np.sqrt(gamma) * destroy(2) # TLS coupled collapse operator

psi0 = basis(2,0) # starting state |psi(0)> = |0>

def Htls(gamma, pulseLength, pulseArea):

RabiFreq = pulseArea / (2*pulseLength)

# Bare Hamiltonian for a TLS

H0S = w0 * create(2) * destroy(2)

# Define H_1S(t)

H1S1 = lambda t, args: RabiFreq * 1j*np.exp(-1j*w0*t) * (t < pulseLength)

H1S2 = lambda t, args: RabiFreq * -1j*np.exp(1j*w0*t) * (t < pulseLength)
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# Put the Hamiltonian in QuTiP list-callback form

return [H0S - 1j/2 * sm.dag() * sm,

[sm.dag(), H1S1],

[sm, H1S2]]

F.5 Computing photon scattering amplitudes

Let’s begin by computing the scattering amplitude of a single-photon emission as a function of time.

For this, we can use the temporal scattered state() function in the scattering module, which

computes:

|ϕn⟩ =
∫ ∞

0

dτ1

∫ ∞

τ1

dτ2 · · ·
∫ ∞

τn−1

dτn ⟨0S , {τ1, τ2, · · · , τn} | ψ(t→∞)⟩ |τ1, τ2, · · · , τn⟩

=

∫

τ⃗n

dτ⃗n ⟨0S , {τ⃗n} | ψ(t→∞)⟩ |τ⃗n⟩

=

∫

τ⃗n

dτ⃗n

〈
Ω̂†

−
〉
τ⃗n
|τ⃗n⟩

= Ω̂†
− |ψ0⟩ .

(F.12)

This function takes as arguments the Hamiltonian or the effective Hamiltonian, the initial system

state, the number of emissions, a list of collapse operators (one for each waveguide - see the following

section for more detail), and a list of times. The list of times must exceed the duration of the pulse

for the function to yield sensible results (or, if the pulse does not have a well-defined end, the times

list must contain most of the temporal region of interest).

By passing the keyword argument construct effective hamiltonian, you can tell the func-

tion whether the Hamiltonian you provided is H or Heff; by default, the value is True, so an

effective Hamiltonian will be constructed from the provided list of collapse operators as Heff =

H − i
2

∑
n c ops[n]. The function iteratively calls photon scattering operator() and returns the

temporal scattered state as a Qobj, so to extract the amplitudes at, we will need to project it onto

the temporal basis:

at = ⟨t | ϕn⟩ = ⟨t| Ω̂†
− |ψ0⟩ = ⟨t|

∫

τ⃗n

dτ⃗n

〈
Ω̂†

−
〉
τ⃗n
|τ⃗n⟩ , (F.13)

which we can do using the temporal basis vector() function. This function takes a nested list

of temporal emission indices for each waveguide and the total number of time bins. For the single-

waveguide case, the nested list of time indices simply reduces to [[indexOf(t)]]. Computing the
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scattering amplitudes using the same parameters as the ones used in the analytical results of Figure

5(b) in Fischer, et al., we obtain visually identical results:

T = 200

tlist = np.linspace(0,1.5/gamma,T)

pulse_length = 0.2 / gamma

pulse_areas = [np.pi, 2*np.pi, 3*np.pi]

for pulse_area in pulse_areas:

# Use construct_effective_hamiltonian=False since we are providing H_eff in this case

scattered_state = temporal_scattered_state(Htls(gamma, pulse_length, pulse_area),

psi0, 1, [sm], tlist, construct_effective_hamiltonian = False)↪→

amplitudes = []

for i in range(T):

amplitudes.append((temporal_basis_vector([[i]], T).dag() *

scattered_state).full().item())↪→

# Adjust amplitudes for time evolution

amplitudes = np.real(np.array(amplitudes) * np.exp(1j * w0 * tlist))

plt.plot(tlist, amplitudes, label = "$A_R = {}\pi$".format(round(pulse_area / np.pi)))

plt.ylim(-1,1)

plt.xlim(tlist[0],tlist[-1])

plt.xlabel('Time index, $\\tau_1$ [$1/\gamma$]')

plt.ylabel('$\phi_1 ( \\tau_1) e^{-i \omega_0 \\tau_1} [\gamma^{1/2}]$')

plt.legend(loc = 'upper right')

plt.show()

Output:
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F.6 Total photon scattering probability

To calculate the total probability of emitting a certain number of photons, Pn = ⟨ϕn | ϕn⟩, we can

expand in terms a complete set of temporal projection operators
∫
τ⃗n
|τn⟩ ⟨τn| dτn:

Pn = ⟨ϕn | ϕn⟩

=

∫

τ⃗n

dτ⃗n ⟨ϕn | τ⃗n⟩ ⟨τ⃗n | ϕn⟩

=

∫ ∞

0

dτ1

∫ ∞

τ1

dτ2 · · ·
∫ ∞

τn−1

dτn ⟨ϕn | τ1, τ2, · · · τn⟩ ⟨τ1, τ2, · · · τn | ϕn⟩

(F.14)

More simply, however, you can use the scattering probability() function, which recursively

integrates the results of temporal scattered state() to return the total probability of N photons

being scattered from the system over the specified list of times. Notably, the time list does not need

to be linear - the integration routines will account for unevenly spaced time bins. This allows you

to do things like provide logarithmically spaced times, which better captures regions closer to t = 0

where more interesting dynamics occur.

To make things faster, we’ll remove the time dependence of Heff with a rotating frame trans-

formation. We’ll also drop the − i
2σ

†σ term and the construct effective hamiltonian = False

argument to allow temporal scattered state() to construct the effective Hamiltonian on its own.

Since scattering probability() returns a pickleable result (a number), it is also very easily

multiprocessed, so we’ll take this opportunity to show how this can be done. (Note that this does

make debugging untested code a more opaque process.) Computing the total scattering probabilities

for N = 0, 1, 2 photons as a function of pulse area yields a similar result to Figure 5(a) in Fischer,

et al:

def Htls_rft(gamma, pulseLength, pulseArea):

RabiFreq = pulseArea / (2*pulseLength)

return [[sm.dag() + sm, lambda t, args: RabiFreq * (t < pulseLength)]]

pulse_length = 0.2 / gamma

pulse_areas = np.linspace(0,4*np.pi,100)

tlist = np.geomspace(gamma, 7*gamma, 40) - gamma

emission_nums = [0,1,2]

def scattering_probability_multiprocess(pulse_area, n):

# Helper function to allow pool.map parallelism

return scattering_probability(Htls_rft(gamma, pulse_length, pulse_area), psi0, n,

[sm], tlist)↪→



APPENDIX F. COMPUTING PHOTON SCATTERING IN OPEN QUANTUM SYSTEMS 187

pool = Pool(worker_count)

for n in emission_nums:

args = [(pulse_area, n) for pulse_area in pulse_areas]

scatter_probs = pool.starmap(scattering_probability_multiprocess, args)

plt.plot(pulse_areas / np.pi, scatter_probs, label = "$P_{}$".format(n))

pool.close()

plt.ylim(0,1)

plt.xlim(pulse_areas[0]/np.pi, pulse_areas[-1]/np.pi)

plt.xlabel("Pulse area, $A_R [\\pi]$")

plt.legend()

plt.show()

Output:

F.7 Computing second-order coherence in the scattered state

In experiments, the two-photon wavefunction is often characterized from the second-order coherence:

G(2)(t1, t2) ≈ ⟨ϕ2| b†0(t1)b†0(t2)b0(t2)b0(t1) |ϕ2⟩ . (F.15)

Since the creation operators b†0 do not translate exactly into the basis used in qutip.scattering,

this is not directly computable in this form, but we can still calculate G(2) with creative application of

temporal basis vector(). The second-order coherence measures the correlations for photons to be
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emitted at times t1 and t2 with corresponding time-bin indices i and j. To compute the coherence, we

first compute the temporal scattered state, then project it onto temporal basis vector([[i,j]],

T), which gives the basis vector corresponding to photons emitted at time indices i and j (into the

same - first - waveguide) out of T total time bins. This projection onto a (approximately) complete

set of temporal basis vectors gives the second-order coherence, which is Figure 5(c) in Fischer, et

al.:

T = 200

tlist = np.linspace(0,1.5/gamma,T)

pulse_area = 6*np.pi

pulse_length = 0.2 / gamma

correlations = np.zeros((T, T))

H = Htls_rft(gamma, pulse_length, pulse_area)

scattered_state = temporal_scattered_state(H, psi0, 2, [sm], tlist)

for i in range(T):

for j in range(T):

# temporal_scattered_state() computes only using ordered emission times, so to

# get the full set of correlations, we need to use ordered temporal basis vector

[a,b] = sorted([i,j])

basis_vec = temporal_basis_vector([[a,b]], T)

correlations[i,j] = np.abs((basis_vec.dag() * scattered_state).full().item())**2

fig, ax1 = plt.subplots(1,1)

cax = ax1.imshow(correlations, interpolation='nearest', origin='lower')

ax1.set_xticks(np.linspace(0,T-1,4))

ax1.set_xticklabels([0.0, 0.5, 1.0, 1.5])

ax1.set_xlabel("Time, $t_1$ [$1/\gamma$]")

ax1.set_yticks(np.linspace(0,T-1,4))

ax1.set_yticklabels([0.0, 0.5, 1.0, 1.5])

ax1.set_ylabel("Time, $t_2$ [$1/\gamma$]")

fig.colorbar(cax)

plt.show()
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Output:

F.8 Pulse-wise second-order coherence

Experimentally accessing the temporal correlations given by G(2) or photocount distributions Pm

can be quite challenging, so typically a quantity called the pulse-wise second-order coherence is used,

defined as:

g(2)[0] =

∑
mm(m− 1)Pm

(
∑
mmPm)

2 ≈ 2P2

(P1 + 2P2)2
. (F.16)

We can easily compute this with scattering probability, obtaining similar results to Figure

5(d) in Fischer, et al.:

pulse_length = 0.2/gamma

pulse_areas = np.linspace(0.01,4*np.pi,150)

emission_nums = [1,2]

# you can use non-linearly space time bins with scattering_probability()

tlist = np.geomspace(gamma, 21*gamma, 40) - gamma

def scatter_prob(pulse_area, n):

# Helper function to allow pool.map parallelism

return scattering_probability(Htls_rft(gamma, pulse_length, pulse_area), psi0, n,

[sm], tlist)↪→

pool = Pool(worker_count)
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Pm = dict.fromkeys(emission_nums)

for n in emission_nums:

args = [(pulse_area, n) for pulse_area in pulse_areas]

Pm[n] = np.array(pool.starmap(scatter_prob, args))

pool.close()

# Calculate pulse-wise coherence

pulseWiseCoherence = np.sum([m * (m-1) * Pm[m] for m in Pm], axis=0) / \

np.square(np.sum([m * Pm[m] for m in Pm], axis=0))

plt.plot(pulse_areas/np.pi, pulseWiseCoherence)

plt.ylim(0,6)

plt.xlim(pulse_areas[0]/np.pi, pulse_areas[-1]/np.pi)

plt.xlabel("Pulse area, $A_R$ $[\pi]$")

plt.ylabel("$g^{(2)}[0]$")

plt.show()

Output:

F.9 Multiple waveguides: spontaneous parametric downcon-

version

We’ll now extend the problem to multiple waveguides by simulating the scattering dynamics of

spontaneous parametric downconversion. The scattering amplitude discussed above extended to a



APPENDIX F. COMPUTING PHOTON SCATTERING IN OPEN QUANTUM SYSTEMS 191

system with W waveguides is:

〈
Ω̂†

−
〉
τ̃(N)
≡
〈
Ω̂†

−
〉
τ⃗

(m1)
1 ,τ⃗

(m2)
2 ,...,τ⃗

(mM )

M

= ⟨0S|Ueff(τmax, τ̃N )

1∏

q=N

√
γQ[q]aQ[q]Ueff(τ̃q, τ̃q−1) |ψS(0)⟩

(F.17)

as a projection onto |τ⃗ (m1)
1 , τ⃗

(m2)
2 , . . . , τ⃗

(mW )
W ⟩, where N = m1 + m2 + · · · + mW is the total

number of photons scattered, τ̃ (N) is a chronologically sorted set of all time indices from the τ⃗
(mi)
i ’s,

and Q[q] is the index of the waveguide corresponding to the photon scattered at τ̃q. We present this

equation without derivation; see Fischer, et al. for more details.

Consider a SPDC cavity with a Hamiltonian given by a sum of time-independent and -dependent

parts H = H0S +H1S , with:

H0S = ω1a
†
1a1 + ω2a

†
2a2, (F.18)

and

H1S = g(t)
(
eiωpta1a2 + e−iωpta†1a

†
2

)
, (F.19)

where a1 and a2 annihilate photons at frequencies ω1 and ω2, respectively, ωp = ω1 + ω2, and g(t)

is a function depending on the amplitude of the pump beam and the nonlinear susceptibility of

the cavity. As a specific example, let’s consider driving the system with a Gaussian pulse, such

that g(t) = g0 exp
(
− (t−t0)2

2τ2

)
. Truncating the cavity excitation capacity to n = 6, we define the

Hamiltonian for the system, again using a rotating frame transformation as before:

HSPDC =
(
a†1a

†
2 + a1a2

)
g(t) +Heff terms, (F.20)

where we allow the functions to construct the effective Hamiltonian by adding the − i
2

∑
n c ops[n]

terms.

Ncav = 6 # cavity excitation capacity

a1 = tensor(destroy(Ncav), qeye(Ncav)) # left cavity annihilator

a2 = tensor(qeye(Ncav), destroy(Ncav)) # right cavity annihilator

cavity_vac = tensor(basis(Ncav, 0), basis(Ncav, 0)) # vacuum state

w1 = w2 = 1/gamma # cavity frequencies

wp = w1 + w2 # pump frequency

spdc_c_ops = [np.sqrt(gamma)*a1, np.sqrt(gamma)*a2] # cavity collapse operators

# Gaussian laser pulse

def g(t, t0, g0, tau):

return g0 * np.exp(-1 * (t-t0)**2 / (2 * tau**2))
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# SPDC Hamiltonian with rotating frame transformation applied

def Hspdc(t0, g0, tau):

return [[a1.dag() * a2.dag() + a1 * a2, lambda t, args: g(t, t0, g0, tau)]]

F.10 Two-photon scattering amplitudes

Here we compute the amplitude for the two-photon part of the output state projected onto the

temporal basis. We plot only the case where one photon is scattered into the first waveguide and

the other into the second: this is of course symmetric under reversal, and the cases of two photons

scattered into only one waveguide are forbidden and have amplitude 0, since the difference in the

number of photons in the two cavities is conserved in the presence of the pump beam. Using similar

parameters as Fig 6(a) in Fischer, et al., we obtain a similar result:

tau = 0.05 / gamma # width of gaussian pulse

t0 = 3.5 * tau # center of gaussian pulse

g0 = gamma # amplitude of gaussian pulse

T = 100 # number of time bins

W = 2 # number of waveguides

tlist = np.linspace(0, 3/gamma, T)

phi = temporal_scattered_state(Hspdc(t0, g0, tau), cavity_vac, 2, spdc_c_ops, tlist)

amplitudes = np.zeros((W, W, T, T,))

for i, tau1 in enumerate(tlist):

for j, tau2 in enumerate(tlist):

[a,b] = sorted([i,j]) # sort the indices to comply with time-ordering

for wg1 in [0,1]:

for wg2 in [0,1]:

indices = [[] for _ in range(W)]

indices[wg1].append(a)

indices[wg2].append(b)

basisVec = temporal_basis_vector(indices, T)

amplitudes[wg1,wg2,i,j] = np.abs((basisVec.dag() * phi).full().item())**2

# Plot the correlation for emission times emitted into different waveguides; note

# that amplitudes[0][0] = amplitudes[1][1] = 0 and amplitudes[0][1] = amplitudes[1][0].

fig, ax1 = plt.subplots(1,1)
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cax = ax1.imshow(amplitudes[0][1], interpolation='nearest', origin='lower')

ax1.set_xticks(np.linspace(0,T-1,4))

ax1.set_xticklabels([0, 1, 2, 3])

ax1.set_xlabel("Time, $t_1$ [$1/\gamma$]")

ax1.set_yticks(np.linspace(0,T-1,4))

ax1.set_yticklabels([0, 1, 2, 3])

ax1.set_ylabel("Time, $t_2$ [$1/\gamma$]")

fig.colorbar(cax)

plt.show()

Output:

F.11 Multi-waveguide photon emission probability

Finally, we can compute the variation in probability of single-and two-photon emission as a function

of the pulse length. This simulation exhibits a slight variation from the expected behavior in Figure

5(c) of Fischer, et al., more apparent at larger times, due to the interaction timescale of interest

increasing relative to the total timescale as a function of pulse length. However, the results do closely

resemble the expected analytical results:

emission_nums = [0, 2]

pulse_lengths = np.linspace(0.05/gamma, 1.1 / gamma, 50)



APPENDIX F. COMPUTING PHOTON SCATTERING IN OPEN QUANTUM SYSTEMS 194

tlist = np.geomspace(1/gamma, 21/gamma, 50) - 1/gamma

def scattering_probability_multiprocess(pulse_length, n):

tau = pulse_length

t0 = 3.5 * tau

H = Hspdc(t0, gamma, tau)

return scattering_probability(H, cavity_vac, n, spdc_c_ops, tlist)

pool = Pool(worker_count)

probs = {}

for n in emission_nums:

args = [(pulse_length, n) for pulse_length in pulse_lengths]

probs[n] = np.array(pool.starmap(scattering_probability_multiprocess, args))

pool.close()

# Compute the purity of the output state

purity = [probs[2][p] / (1-probs[0][p]) for p in range(len(pulse_lengths))]

# Plot it

for n in probs:

plt.plot(pulse_lengths / gamma, probs[n], label = "$P_{}$".format(n))

plt.plot(pulse_lengths / gamma, purity, '--', label = "Purity")

plt.ylim(0,1)

plt.xlim(pulse_lengths[0]/gamma, pulse_lengths[-1]/gamma)

plt.xlabel("Pulse length, $\\tau$ $[1/\gamma]$")

plt.legend()

plt.show()

This notebook was executed on April 8, 2018, using QuTiP version 4.3.0 and NumPy version

1.13.3.
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Output:
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