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ABSTRACT
Synthetic dimensions have generated great interest for studying many types of topological, quantum, and many-body physics, and they offer
a flexible platform for simulation of interesting physical systems, especially in high dimensions. In this paper, we describe a programmable
photonic device capable of emulating the dynamics of a broad class of Hamiltonians in lattices with arbitrary topologies and dimensions.
We derive a correspondence between the physics of the device and the Hamiltonians of interest, and we simulate the physics of the device
to observe a wide variety of physical phenomena, including chiral states in a Hall ladder, effective gauge potentials, and oscillations in high-
dimensional lattices. Our proposed device opens new possibilities for studying topological and many-body physics in near-term experimental
platforms.

© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0181151

The emerging concept of synthetic dimensions in photonics has
generated great interest for topological physics,1–5 optimization,6–9

and quantum simulation and computation.10–17 Synthetic dimen-
sions are formed by controlling couplings between degrees of
freedom of a system, either by repurposing the usual geomet-
ric dimensions, such as space18 or time,6–8,19–23 or by augment-
ing these dimensions with internal degrees of freedom, such as
frequency,11,24–27 spin,1,28–30 or orbital angular momentum.31,32

Since couplings in synthetic dimensions can be dynamically recon-
figured and are not fixed by a physical structure, one can scal-
ably implement high-dimensional lattices with complex topologies,
making this an ideal platform for quantum simulation.

In this theoretical work, we describe a programmable pho-
tonic device capable of simulating the dynamics of interacting
bosons in lattices with arbitrary dimensions, topologies, and con-
nectivities using a synthetic time dimension. A large class of
prototypical condensed matter Hamiltonians can be described by
local two-body interactions on an arbitrary lattice. This class of

Hamiltonians, which includes tight-binding models, the Hubbard
and Bose–Hubbard models and their various extensions,33 and the
Harper–Hofstadter–Hubbard model,34 can, in general, be described
as (using h = 1 throughout this paper),

Ĥ = −∑
⟨m,n⟩
(κmneiαmn â†

mân +H.c.) + μ∑
m

â†
mâm +U∑

m
â†

mâ†
mâmâm,

(1)

where κmn and αmn, respectively, denote the tunneling coefficients
and phases between connected sites ⟨m, n⟩, â†

m creates a boson at
site m, μ is the chemical potential, and U is the Hubbard interaction
strength. The first term describes the tunneling of a particle between
sites m and n, with a complex tunneling strength with amplitude κmn
and phase αmn; the second term sets the energy per particle μ; and the
third term is an on-site interaction potential with strength U, which
is active when a site contains more than one particle. This very gen-
eral class of Hamiltonians exhibits rich phase diagrams and relates to
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quantum magnetism, high-temperature superconductors, and mag-
netic insulators, among many other applications.35–37 Our approach
is distinct from those of existing experimental demonstrations and
theoretical proposals for the simulation of such Hamiltonians,38

which include ultracold atoms on optical lattices,39–41 trapped ions,42

and superconducting qubits.43–49 We note that our approach is dis-
tinct from previous realizations of photonic mesh lattices using
two-loop architectures,50–53 which implement a discrete-time non-
interacting quantum walk that is limited in the number of evolution
steps due to the ratio between the pulse period and the difference
in round-trip times. In contrast, our setup implements a Trotterized
version of a continuous-time interacting quantum walk. Moreover,
our scheme can create arbitrarily shaped lattices in higher dimen-
sions through active modulation control, whereas the two-loop
architectures need physical modifications to increase dimensionality
or change the connectivity of the lattice.

We propose a system that emulates the dynamics of the Hamil-
tonian in Eq. (1) using a synthetic temporal dimension. The design

consists of a waveguide loop exhibiting Kerr nonlinearity, the
“storage ring,” in which a train of single-photon pulses propagates
in a single direction, with each pulse occupying its own time bin. A
second loop, the “register,” is connected to the storage ring using
a Mach–Zehnder interferometer (MZI) with two tunable phase
shifters, θ and ϕ. The hardware of the device is chosen to emulate
each term of the Hamiltonian with dedicated components. The first
term of Eq. (1) is implemented by the tunable MZI; the second term
arises naturally from the total photon energy in each time bin; and
the two-photon potential in the third term results from using a Kerr-
nonlinear fiber for the storage and register loops. We will briefly
derive how each component implements the desired behavior and
then describe how to program the device.

A system evolving for a time interval t under the Hamiltonian
given in Eq. (1) has a propagator e−iĤ t . We can split the exponential
of the summation into a product of exponentials to within 𝒪(κ2t2

+ κUt2 cos α), where κ and α are typical values of κmn, αmn (see the
supplementary material for a more detailed derivation),

e−iĤ t
= exp

⎡
⎢
⎢
⎢
⎢
⎣

−it
⎛

⎝
−∑
⟨m,n⟩

κmn(eiαmn â†
mân + e−iαmn â†

nâm) + μ∑
m

â†
mâm +U∑

m
â†

mâ†
mâmâm

⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

≈

⎡
⎢
⎢
⎢
⎢
⎣

∏
⟨m,n⟩

exp (iκmn(eiαmn â†
mân + e−iαmn â†

nâm))

⎤
⎥
⎥
⎥
⎥
⎦

t

× e
−it(μ∑

m
â †

m â m+U∑
m

â †
m â †

m â m â m)

. (2)

We, therefore, have a propagator that is a product of two parts:

a continuous time evolution term e−it(μ∑m â †
m â m+U∑m â †

m â †
m â m â m),

which arises naturally from the photon energy per time bin (μ)
and Kerr nonlinearity of the fiber (U), and the exp (iκmneiαmn â†

mân
+H.c.) terms, which are implemented in discrete time evolution by
a sequence of passes through the tunable MZI. We now show how
the device physics emulates the dynamics of the propagator.

For the chemical potential term, we can write the Hamil-
tonian for a photon with an arbitrary spectrum as ĤEM

= ∫dk∑m
1
2 h̵ωk(â

†
m,kâm,k + âm,kâ†

m,k). If we can assume that the
photons are spectrally narrow about a carrier frequency ω0,
we can approximate this as ĤEM ≈

1
2 h̵ω0∑m (â

†
mâm + âmâ†

m)

= h̵ω0∑m (â
†
mâm +

1
2) ≡ μ∑m â†

mâm, which directly gives us the
desired chemical potential term.

The nonlinear potential naturally arises from the use of a non-
linear fiber. Consider a section of a Kerr-nonlinear fiber correspond-
ing to one time bin, with length Δx and volume V . The material
polarization at frequency ω induced by an electric field E(ω) is given
by 𝒫NL(ω) = 3ε0χ(3)(ω)∣E(ω)∣2E(ω), where χ(3) is the third-order
susceptibility tensor, which, for simplicity, we treat as a scalar. The
energy density 𝒰NL is related as 𝒫NL = ∂𝒰NL/∂E∗, and the Hamil-
tonian of this system, again assuming a narrow bandwidth about
ω0, is ĤNL = ∫V 𝒰NL (ω0)d3 r⃗. After quantizing the field ampli-
tudes as E(ω0)↦

√
̵hω0

2ε0V (â
†
k0

e+i(ω0t−k0z)
+H.c.) and transforming

into real space, we obtain ĤNL = (
9̵h2ω2

0
8ε0n4

0V2 ∫V χ(3)d3r)â †â †ââ + C

≡ Uâ †â †ââ + C, where the nonlinear potential coefficient is U
=

9̵h2ω2
0

8ε0n4
0V2 ∫V χ(3)d3r and where C is some constant corresponding to

an overall energy shift. Applying this to each time bin gives us the
desired U∑m â†

mâ†
mâmâm nonlinear potential term. Note that this

interaction term U and its estimation from the material nonlinear-
ity χ(3) is subject to the usual caveats that have been discussed in the
literature when the U is large; however, we may be able to circum-
vent these issues partially since the nonlinear phase shift per clock
cycle can be designed to be small while still achieving a large U/κ
ratio.54–56

Finally, the hopping terms arise from programmatically modu-
lating the phase shifts in the MZI. To interfere two photons m and
n with strength κmn and phase shift αmn, the basic idea is to swap
pulse m into the register ring, wait for pulse n to reach the MZI,
interfere the pulses, and then return pulse m to the storage ring
when time bin m cycles back. The following calculations are done
in greater detail in Sec. I of the supplementary material. Consider
the MZI shown in Fig. 1(a) with phase shifters ±ϕ and θ. Define
bosonic mode operators â†

n, â†
0 and b̂†

n, b̂†
0 , which create a photon in

time bin n or time bin 0 (the register bin) and at the input or output
of the MZI, respectively. We can relate the output and input mode
operators as

⎡
⎢
⎢
⎢
⎢
⎢
⎣

b̂†
0

b̂†
n

⎤
⎥
⎥
⎥
⎥
⎥
⎦

= e−i θ
2 (eiϕ â†0 ân+H.c.)

⎡
⎢
⎢
⎢
⎢
⎢
⎣

â†
0

â†
n

⎤
⎥
⎥
⎥
⎥
⎥
⎦

≡ M̂0,n(θ, ϕ)
⎡
⎢
⎢
⎢
⎢
⎢
⎣

â†
0

â†
n

⎤
⎥
⎥
⎥
⎥
⎥
⎦

. (3)
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FIG. 1. Architecture for the programmable photonic quantum emulator. (a) The physical design of the device. Classical laser pulses or single-photon pulses propagate through
a fiber storage ring. A programmable Mach–Zehnder interferometer connects the storage ring to a register loop, which has an optical path length Δx equal to the length of a
single time bin. By setting the phase shift values in the MZI, the hopping coefficients and phases (κmn, αmn) can be programmatically adjusted. Photons have energy μ ≡ hω0,
and by using a χ(3)-nonlinear fiber, a nonlinear interaction potential U can be applied. (b) An example 2D grid lattice to be emulated by the device. Node labels correspond
to photon pulse indices, and the device as depicted in panel (a) is constructing the orange edge connecting nodes 1 and 2 with (κ12, α12). (c) Illustration of a single clock
cycle (defined as the round-trip time through the storage ring) of the emulator applying the interaction (κ12, α12) in three steps, shown as the three rows. The colors of the
time bins match the node colors in panel (b) for visual clarity, with θ and ϕ labels denoting MZI phase shifts per step. First, phase shifters are set to transfer photon 1 into
the register, where it circulates for one path length (equal to 1/9 the path length of the storage ring, depicted in the figure by the register bin moving to the right by one bin
relative to storage). Second, photon 1 is interacted with photon 2 using θ = 2κ12 and ϕ = α1,2. Third, the pulse (which now contains a mixture of photons 1 and 2) is returned
to its original time bin after propagating through the register ring eight more times. (d) The evolution of the state of the device while emulating a tight-binding Hamiltonian over
the lattice shown in panel (b). The bottom panel depicts the exact evolution of e−iĤ t/h over a wall-clock time t/h, while the top panel shows the state of the emulator at each
clock cycle, including register swaps (depicted as the dark/light bands in the storage/register rows) and intermediate states between full iterations. A large value of κ = 0.2
was used for visual clarity, but more accurate results may be obtained by using smaller κ and running the emulation for a commensurately longer wall-clock time.

It is easily verified that the following identity holds: M̂0,m(π,−π/2)
M̂0,n(θ, ϕ)M̂0,m(π,+π/2) = exp[−iθ/2(eiϕâ†

mân + e−iϕâ†
nâm)] ≡ T̂m,n

(θ, ϕ). If we define κ ≡ −θ/2 and α ≡ +ϕ, we obtain the transfer
matrix as

T̂mn(κ, α) = exp [iκ(eiαâ†
mân + e−iαâ†

nâm)]. (4)

The middle θ phase shifter thus allows us to control the strength of
the coupling κ, while the outer phase shifters ±ϕ control the hop-
ping phases α. (Note that the effects of ±ϕ cancel while the photon is
circulating in the register ring, but they do not cancel on entry/exit
from the register, keeping the register and storage phases aligned.)

By performing this sequence of passes through the MZI
T̂⟨m,n⟩ ≡∏⟨m,n⟩ T̂mn(κmn, αmn) for every photon pair ⟨m, n⟩, which
corresponds to an interacting pair of lattice sites m and n in the
Hamiltonian, we complete one “iteration” of the emulator. The lat-
tice sites can be interacted in any order as long as the values of κ
are small (see the supplementary material, Secs. I and I A), which is
always possible to do by decreasing κ, μ, and U by some constant
factor and running the emulator for a commensurately longer wall-
clock time. If we allow the system to evolve for t iterations, we obtain
a total transfer matrix, which is exactly the first term in Eq. (2),

T̂t
⟨m,n⟩ =

⎛

⎝
∏
⟨m,n⟩

exp [iκmn(eiαmn â†
mân +H.c.)]

⎞

⎠

t

. (5)

Therefore, all three components of the propagator are present,
and the evolution of a state in the device for t iterations is described
term-by-term by the propagator in Eq. (2). To adjust the rel-
ative values of continuous time evolution variables (μ, U) and
discrete time evolution variables (κ, α), one can adjust the pho-
ton energies μ, Kerr interaction strength U, time bin size Δx, or
phase shifter values θ, ϕ, potentially circumventing the issues raised
in Ref. 54.

To provide some realistic experimental parameters, the 2D grid
lattice in Fig. 1(b) can be emulated using a register ring with a fiber
length of 20 cm and a storage ring with a fiber length of 1.8 m
to accommodate nine time bins of 1 ns. Since there are 18 inter-
actions to construct, the total operation time would be 162 ns (18
clock cycles). The minimum duration of a time bin is limited by
the switching speed of the phase shifters, which can range from 10
to 50 GHz in lithium niobate and barium titanate platforms.57,58

Further discussion of experimental details can be found in the
supplementary material.
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To more concretely show the capabilities of our proposed
device, we now provide several demonstrations of the device
emulating interesting systems with experimentally measurable sig-
natures. We show the device can create an effective gauge potential
by emulating a synthetic Hall ladder, we demonstrate the quantum
nature of the device by trapping a two-photon state using a syn-
thetic field, and we demonstrate the reconfigurability of the device by
emulating the evolution of a Bose–Hubbard Hamiltonian on a four-
dimensional tesseract lattice. For these demonstrations, we wrote
a Python simulator built with QuTiP59 to tractably simulate the
system using a permutationally invariant bosonic lattice represen-
tation of the system state space. This simulation method is described
in greater detail in the supplementary material and is available
online at github.com/fancompute/synthetic-hamiltonians.

Figure 2 shows an emulated synthetic Hall ladder and obtains
a similar band structure as the recent experimental results of Ref. 1.
The actual physics of the emulation device are simulated to derive
this result. The system is evolved for 200 iterations; using the naive
interaction method described in Fig. 1(c), this would take a wall-
clock time of 32 ms, but a more sophisticated scheme presented
in Sec. VI of the supplementary material can parallelize the emu-
lation of this lattice to reduce this time by three orders of magnitude
to 40 μs.

The system shown in Fig. 2 exhibits chiral edge states in the
presence of an effective magnetic field, which is induced by adding
translation-invariant hopping phases ±α/2 to the outer edges of the
ladder using the MZI. Figure 2(a) depicts the emulated ladder sys-
tem; left and right nodes on each rung are mapped to pulses in even-

FIG. 2. (a) Lattice diagram for a two-legged synthetic Hall ladder emulated with the device. (b) Band structure of the system computed by diagonalizing the Hamiltonian for
the exact case (top row) or the matrix logarithm of the propagator for the emulated case (bottom row) in the presence (left) and absence (right) of a synthetic magnetic field.
Color denotes photon occupancy on the left and right sides of the ladder. (c) Propagation of chiral edge currents on the left leg of the ladder. A Gaussian input state is created
with some initial k = ±0.1 by exciting multiple time bins corresponding to the nodes of the left leg of the ladder with a phase difference between bins. When the gauge field
is turned on (α = 2π/3), the motion in one direction is inhibited.

FIG. 3. Emulated evolution of (a) a two-photon state and (b) a single-photon state in a 1D lattice as (c) time-dependent hopping phases are varied. The changing hopping
phases introduce a changing gauge potential that causes the two-photon state to experience an effective electric field. The single-photon state is unaffected by this field.
Parameters used in the simulated device: κ = 0.1 and U = 0.8.
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and odd-indexed time bins. The band structures for the target and
emulated Hamiltonians for this system are shown in Fig. 2(b) for
hopping phases α = 2π/3 and α = 0. (The band structures for the
synthetic case are computed by simulating one iteration of the prop-
agator Ĝ = e−iĤ (t=1) in the device, taking the matrix logarithm Ĥ
=

log Ĝ
−i , and then diagonalizing Ĥ; k values are computed using peak

detection of the eigenstate Fourier transform; see the supplementary
material for more detail.) The band structures from the emulated
system (bottom row) closely match the desired band structures (top
row; see also Ref. 60), as well as the experimental results from very
different platforms (Fig. 2 of Ref. 1). This shows that the simula-
tion of our device physics faithfully constructs the desired synthetic
Hall Hamiltonian. Chiral edge states are clearly visible in the case
of α = 2π/3, indicating the presence of an effective gauge potential.
The propagation of these chiral currents on the left leg of the lad-
der is shown Fig. 2(c). In the presence of a gauge field, only one-way
motion is permitted.

Next, to demonstrate the quantum capabilities of the device,
we show how a two-photon state can be manipulated by introduc-
ing time-dependent hopping phases α(t) on a 1D lattice while using
nonlinearity, which is strong compared to the coupling constants
U ≫ κ. Figure 3 depicts the evolution of a two-photon state and a
single-photon state under time-dependent hopping phases α(t). The
energetic gap between U ≫ κ means that while α(t) = 0, the two-
photon state evolves the same as the single-photon state but with a
slower timescale for the evolution. [The two-photon state in panel
(a) undergoes slower evolution because the Hamiltonian has no
terms that can transport two photons simultaneously between lat-
tice sites. Thus, evolution is allowed only via single-photon transport
through an intermediate state that is lower in energy by U, which
never develops a sizable population because it is off-resonant from
the initial and final states.] As α(t) is changed, ∂α/∂t introduces
an effective field, analogous to E⃗ = −∇V − ∂A⃗/∂t, which causes
the two-photon state to look like it is “lensing” back to its origi-
nal configuration. This field is maximized at odd multiples of π/2,
and by choosing suitable amplitude, duration, and periodicity of
α(t), the two-photon state can effectively be trapped in the cen-
ter of the lattice. The single-photon state is unaffected by the field,
since we can perform a gauge transformation of the single-photon
basis states as â†

n ↦ b̂†
neinα(t), which eliminates the effect of α(t).

Note that this two-photon trapping behavior can be related to the

photon bound states that have been extensively studied in waveguide
quantum electrodynamics (QED) and cavity QED.61–67 Assuming
a 100 ps pulse with an effective mode area of 1 μm2, our simu-
lated U value corresponds to a χ(3) nonlinearity of ≈2.84 × 10−14

m2/V2. Such a value is achievable using photonic crystal fibers filled
with high-density atomic gas, which can have a χ(3) nonlinearity of
≈5.3 × 10−12 m2/V2.68,69

Finally, we demonstrate how the programmable nature of the
device allows for emulation of complex, high-dimensional topolo-
gies. Figure 4 shows the evolution of a tight-binding Hamiltonian
over a four-dimensional tesseract lattice emulated using the device.
This demonstration uses a single degree of freedom (time) to emu-
late four independent physical synthetic dimensions. A projection
of the non-planar graph defining the lattice is shown in Fig. 4(a).
The evolution of a state with two bosons (emulated by classical
laser pulses) in this tesseract lattice is shown in Fig. 4(b): bosons
are initially placed in time bins 0 and 5, and oscillations across the
tesseract are visible, with the bosons oscillating between sites 0↔ 10
and 5↔ 15. (This is the expected behavior, representing the four-
dimensional analog of a boson oscillating between the corners of a
2 × 2 square lattice.) Two-photon correlation matrices are shown at
different points in time in the upper panels. The state is plotted at the
end of each iteration of the device; since photons have been swapped
out of register time bin at the end of each iteration, it is shown to be
empty at all times.

The simplicity of the design of the device and the flexibility
it provides make it appealing from an experimental perspective. A
detailed error analysis of this design in the presence of experimental
imperfections is presented in the supplementary material, which we
summarize here. Dispersion within the fiber loops is not a concern
until photons travel a total path length of thousands of kilometers.
Optical attenuation in the fiber is not an issue for classically emula-
ble cases (where the total boson number is N = 1 or where the initial
state is well-approximated by a coherent state) such as the Hall lad-
der in Fig. 2, since pulses can be re-amplified as needed. Quantum
emulations require single photon pulses that cannot be re-amplified,
but commercially available fibers have sufficiently low attenuation
to allow for emulation of small lattice systems with very high fideli-
ties per iteration. Finally, sufficiently high values of the nonlinear
potential U have been demonstrated using crystal fibers with high-
density atomic gas,68,69 and integrated photonic platforms70,71 (albeit

FIG. 4. Emulation of a tight-binding Hamiltonian over a four-dimensional tesseract. (a) Projection of the tesseract graph that defines the lattice. (b) Evolution of a tesseract
lattice containing two emulated bosons exhibiting oscillations between time bins 0↔ 10 and 5↔ 15. Parameters: κ = 0.01, α = μ = U = 0.
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in χ(2) materials) show promise for achieving even higher values of
U in the near future.

In summary, we have presented a theoretical design for a
programmable photonic device capable of emulating a broad class
of classical and quantum Hamiltonians in lattices with arbitrary
topologies. The device contains only a single actively controlled
optical component—a phase-modulated MZI—and can be repro-
grammed to emulate a wide variety of systems, such as chiral states in
a Hall ladder, synthetic gauge potentials, and high-dimensional lat-
tices. Our proposed device is an experimentally appealing platform
that opens up new possibilities for studying fundamental topological
and many-body physics.

SUPPLEMENTARY MATERIAL

The supplementary material includes derivations of the corre-
spondence between the device physics and the Hamiltonian, details
on the numerical simulations and experimental implementation,
and the optimized emulation schemes for larger lattices.
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