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Photonics offers unique advantages as a substrate for quantum information processing, but imposes fundamental scal-
ability challenges. Nondeterministic schemes impose massive resource overheads, while deterministic schemes require
prohibitively many identical quantum emitters to realize sizeable quantum circuits. Here we propose a scalable archi-
tecture for a photonic quantum computer that needs minimal quantum resources to implement any quantum circuit: a
single coherently controlled atom. Optical switches endow a photonic quantum state with a synthetic time dimension by
modulating photon–atom couplings. Quantum operations applied to the atomic qubit can be teleported onto photonic
qubits via projective measurement, and arbitrary quantum circuits can be compiled into a sequence of these teleported
operators. This design negates the need for many identical quantum emitters to be integrated into a photonic circuit
and allows effective all-to-all connectivity between photonic qubits. The proposed device has a machine size that is inde-
pendent of quantum circuit depth, does not require single-photon detectors, operates deterministically, and is robust to
experimental imperfections. © 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

https://doi.org/10.1364/OPTICA.424258

1. INTRODUCTION

Photonics offers many advantages for quantum information
processing [1–3]: optical qubits have very long coherence times, are
maintainable at room temperature, and are optimal for quantum
communication. The main difficulty faced by all quantum com-
puting (QC) architectures is scalability, but this is especially true
for photonic systems. Optical qubits must propagate, so processing
must be done mid-flight by passing the photons through sequential
optical components. Since photonic quantum gates are physical
objects (as opposed to, e.g., sequential laser pulses for atomic
qubits), machine size scales with circuit depth, making complex
quantum circuits prohibitively large to implement even using
compact integrated photonics.

Further limiting the scalability of photonic quantum comput-
ers is the difficulty of integrating many high-fidelity multi-photon
gates into an optical circuit. This is an issue for both nonde-
terministic gate schemes [4,5], which impose massive resource
overheads for fault tolerant operation due to low gate success
probabilities [6], and deterministic scattering-based approaches
[7–11]. Although scattering-based two-photon gates can be
individually implemented with high fidelity [12–16], unrealisti-
cally large numbers of identical quantum emitters are needed to
realize sizeable quantum circuits [17], a problem exacerbated in
solid-state quantum emitters by poor indistinguishability due to
homogeneous and inhomogeneous broadening [18,19]. An archi-
tecture for a quantum computer that uses only a single quantum
emitter to implement all gates in a quantum circuit would thus

substantially improve the scalability and experimental feasibility of
scattering-based photonic quantum computation.

Here we show that the emerging concept of synthetic dimen-
sions [20,21] naturally lends itself to such an architecture.
Synthetic dimensions have recently generated great interest for
exploring topological physics in photonics [22], but have not
been extensively applied to quantum photonic systems. To form a
synthetic dimension, one designs the couplings between states of
a system, by either repurposing the usual geometric dimensions,
such as space [23] or time [24–30], or augmenting these dimen-
sions with internal degrees of freedom, such as frequency [31–36],
spin [37–40], orbital angular momentum [41,42], or Floquet-
induced side bands [43,44]. Since couplings between states within
the synthetic dimension can be dynamically reconfigured and are
not fixed by physical structure, one can scalably implement lattices
with intricate connectivity. This allows multiple photonic qubits
to be manipulated in synthetic space by a single quantum emitter
without requiring spatially separated structures.

Our proposed design consists of a fiber loop coupled to a cavity
containing a single coherently controlled atomic qubit. Optical
switches endow counter-circulating photonic states with a syn-
thetic temporal dimension by allowing coupling between these
states. By scattering photons against the atom and subsequently
rotating and projectively measuring the atomic state, operations
can be teleported onto the photonic qubits; these operations can
be composed to deterministically construct any quantum circuit.
Readout of the photonic quantum state can be performed without
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Fig. 1. Photonic quantum computer architecture described in this work. (a) Physical design of the device. Photonic qubits counterpropagate through
a fiber storage ring, and optical switches can selectively direct photons through a scattering unit to interact with an atom in a cavity that is coherently con-
trolled by a laser. (b) Energy structure of the atom: �1 is resonant with the cavity mode and photon carrier frequency, while �0 is far-detuned. (c) Bloch
sphere depiction of the state of a photonic qubit in the {|�〉, |	〉} basis and an operation applied by one pass through the scattering unit. The rotations
about ẑ by fixed angles (gray) are applied by the phase shifter and beam splitter, while the rotation about ŷ by a controllable angle θ (solid red) is applied to
the atom using the cavity laser. Projectively measuring the atom teleports this rotation onto the photon, but may overshoot the target angle θ by π (dotted
red) depending on the measurement outcome m. This operation is a universal single-qubit primitive: by composing several of these operations and adapting
subsequent rotation angles based on measurement outcomes, arbitrary single-qubit gates can be deterministically constructed. See Visualization 1.

the need for single-photon detectors by sequentially swapping the
state of the atom with each photonic qubit.

Our scheme has several unique characteristics. Most notably,
the only controllable quantum resource is the single atomic qubit,
which serves as a proxy to indirectly manipulate the photonic
qubits. All quantum [45] operations and measurements on the
photonic qubits are carried out by operations performed on this
atom that are teleported onto the photons. This reduces the pri-
mary implementation challenge to preparing a single strongly
coupled atom–cavity system, which has been experimentally
demonstrated many times [10,16,46–51]. The synthetic time
dimension allows the single atom to serve as the nonlinearity for
all quantum gates and provides effective all-to-all connectivity
between photonic qubits. The programmable nature of the tele-
ported gates allows the atom to sequentially apply each required
single- and two-photon gate without complex photon routing.
This negates the requirement of conventional photonic QC
schemes for many identical quantum emitters to be integrated
into a photonic circuit. Finally, this design does not require single-
photon detectors, which are a significant limitation to photonic
QC. Instead, measurement of the atomic state can be performed
with near-100% efficiency using the quantum jump technique,
greatly improving the scalability of this design [9,47,52].

2. DESIGN

The architecture for the scheme is shown in Fig. 1(a). Qubits are
encoded as trains of single-photon pulses counterpropagating
through an optical storage ring, where the two propagation direc-
tions {|�〉, |	〉} form the computational basis. A single-photon
source injects photon pulses into the ring; each photon is spectrally
narrow about a carrier frequencyωc , has a pulse width τ , and occu-
pies its own time bin with temporal spacing1t� τ . (The photon
source need not be deterministic as long as the time bin of each
photon can be resolved. Alternately, a dedicated single-photon
source may not be needed, as the atom–cavity system discussed

below could itself be used as the source by using the control laser to
excite the atom [53,54].)

The storage ring contains a pair of asymmetrically placed [55]
optical switches that can selectively direct photons from the ring
through a static 50:50 beam splitter and π/4 phase shifter and
into a pair of waveguides. One of these waveguides is coupled to a
cavity containing a single atom with a3-shaped three-level energy
structure, shown in Fig. 1(b). The atom has nondegenerate ground
states |g 0〉 and |g 1〉 and an excited state |e 〉, and the |g 1〉↔ |e 〉
transition at frequency�1 is resonant with cavity mode frequency
and photon carrier frequency ωc . The atom is coherently con-
trolled by a laser that applies rotations between |g 0〉 and |g 1〉, and
its state can be measured in the {|g 0〉, |g 1〉} basis. We refer to the
subsystem consisting of everything except the storage ring and
photon source [the right half of Fig. 1(a)] as the “scattering unit.”
The round-trip optical path length through the scattering unit is
matched to the path length around the storage ring so that a photon
returns to its original time bin after passing through the scattering
unit.

After a photon scatters against the atom and is returned to
the storage ring, a rotation is applied to the state of the atomic
qubit and a projective measurement is performed, teleporting the
rotation onto the photonic qubit, as shown in the next section. By
composing three of these teleported rotations, arbitrary single-
qubit gates can be deterministically constructed. A controlled
phase-flip (cσz) gate between two photons can also be constructed
with a similar process, enabling universal quantum computation.
Readout of the final quantum state can be performed without the
need for single-photon detectors by sequentially swapping the state
of the atom with each photonic qubit.

A. Rotation Teleportation Mechanism

Here we outline the mechanism by which a rotation gate may be
teleported onto a photonic qubit; we show in the next section
that by composing these teleported rotations, arbitrary single-
qubit gates may be constructed. A derivation of the mechanism
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Fig. 2. Quantum gate sequence corresponding to one pass of a photon
through the scattering unit. The projective measurement teleports the
rotation applied to the atomic qubit onto the photonic qubit.

described here is shown in greater detail in Supplement 1 [56].
Suppose we wish to apply a rotation to photon j , which occu-
pies time bin t j and is circulating in the storage ring in state
|9in〉 = α|�〉 + β|	〉, where |�〉 and |	〉 denote the two
counter-circulating states. While the optical switches are in the
“closed” state, photons remain inside the storage ring; to operate
on photon j , we “open” the switches at time t j −1t/2 and close
them again at t j +1t/2 to direct photon j into the scattering
unit. The photon passes through aπ/4 phase shifter, which applies

(up to a global phase) a Z π
4
≡ Rz(π/4)=

(
e−iπ/8 0

0 e iπ/8

)
rota-

tion, and a 50:50 beam splitter, which applies B = 1
√

2

(
1 i
i 1

)
.

Before interacting with the atom, the photon is a superposition
of modes in the top and bottom waveguides; we label these spatial
modes as |0〉 and |1〉, respectively. We can thus relate the basis
states of the ring and scattering unit via the unitary transformation
{|0〉, |1〉} = B Z π

4
{|�〉, |	〉}.

The |0〉 component of the photon state is reflected by a mir-
ror in the top waveguide, imparting a π phase shift, while the
|1〉 component undergoes a cavity-assisted interaction with the
atom in the bottom waveguide, which is initialized in the state
|+〉 ≡

1
√

2
(|g 0〉 + |g 1〉). The |g 1〉↔ |e 〉 transition frequency �1

is resonant with the cavity mode and photon frequency ωc , while
the |g 0〉↔ |e 〉 frequency �0 is far-detuned. Thus, relative to the
phase of the |0〉mode, a π phase shift is applied to the |1〉 ⊗ |g 1〉

component of the |photon〉 ⊗ |atom〉 quantum state, implement-
ing the unitary transformation corresponding to a controlled-Z
gate between the atom and the photon, cσz = e iπ |1〉〈1|⊗|g1〉〈g1|.
After scattering, the photon passes back through the beam splitter
and phase shifter and is returned to the storage ring. The joint state
|8〉 of the photon–atom system after a round trip through the
scattering unit is

|8〉 =
(

Z π
4

B ⊗ 1
)

cσz

(
B Z π

4
⊗ 1

)
(|ψin〉 ⊗ |+〉) . (1)

After the photon has returned to the storage ring, a rotation
Rx (−θ)= exp(iσxθ/2) is applied to the atomic qubit. Finally,
a projective measurement of the atomic state in the {|g 0〉, |g 1〉}

basis is performed, obtaining a bit m ∈ {0, 1}. As shown in
Supplement 1 [56], this atomic measurement projects the state
of the photonic qubit to

|ψout〉 = Z π
4
σz
(
−σy

)m⊕1
R y (θ)Z π

4
|ψin〉

= im Z 5π
4

R y (θ + π(m ⊕ 1)) Z π
4
|ψin〉, (2)

where R y (θ)= exp(−iσy θ/2), and m ⊕ 1 denotes addition mod-
ulo 2. Thus, the measurement teleports the Rx (θ) rotation of the
atom to the R y (θ) or R y (θ + π) rotation of the photon, depend-
ing on m. The full sequence of operations is shown in Fig. 2.

This teleportation scheme is an inversion of the paradigm of
teleportation-based QC [57–59]: in both cases, the original data
qubit is entangled with an ancilla using a cσz operation, but instead
of rotating and measuring the data qubit to teleport the modified
state onto the ancilla, in our scheme, we rotate and measure the
ancilla (the atom) to teleport a rotation onto the data qubit (the
photon).

B. Constructing Arbitrary Single-Qubit Gates

We now show that the teleported gate operation of Eq. (2) is suffi-
cient to construct arbitrary single-qubit gates. The purpose of the
Z π

4
operations performed by the phase shifter is to rotate the basis

in which the R y (θ) gate is applied. Two passes of a photon through
the phase shifter corresponds to a rotation on the Bloch sphere [see
Fig. 1(c)] about ẑ by 90◦; this change of basis causes a subsequent
R y (θ) to effectively rotate about x̂ . An additional two passes
through the phase shifter rotates x̂ to − ŷ , allowing R y (θ) to act
about ŷ again. The goal here is to construct an operation that has
the form U = R y (θ3)Rx (θ2)R y (θ1), which is sufficient to imple-
ment any single-qubit gate up to an overall phase decomposed via
Euler angles [57].

Consider a sequence of three teleported rotation gates
(Eq. 2) about angles θ1, θ2, θ3 which yield measurement results
m1,m2,m3. As we build up the target operator U with these
successive rotations, the outcomes m1,m2,m3 can result in extra-
neous Pauli gates between rotations that effectively offset the target
angles θ1, θ2, θ3 by π , as in the second line of Eq. (2). Intuitively,
this is equivalent to constructing an arbitrary rotation in 3D space
using only fixed 90◦ rotations about ẑ, together with variable
rotations about ŷ , which may overshoot byπ .

Borrowing a concept from measurement-based quantum com-
putation [57,59,60], we apply rotations to the atomic qubit about
adaptive angles of θ2(m1) and θ3(m2,m1), each of which depends
on the results of the preceding measurements. This allows us to
propagate the Pauli errors from the middle of the gate to the front
and consolidate them as a single error term. The sequence of three
rotations performed in this adaptive basis thus implements the
operation

U = ε(m3,m2,m1)× Z π
4

R y (θ3(m2,m1)) Rx (θ2(m1)) R y (θ1)Z π
4
,

(3)
where the rotations are implicitly programmed to implement U in
the basis rotated by Z π

4
and where the error term ε(m3,m2,m1) is

σx , σy , or σz up to a global phase. This error term ε can then either
(i) be implicitly removed by programming a subsequent gate U ′ to
instead implement U ′ε−1 or (ii) be explicitly removed by scatter-
ing the photon against the atom initialized in the noninteracting
|g 0〉 state or in the fully interacting |g 1〉 state, applying σx or σz,
respectively. The full derivation for this gate construction process is
shown in much greater detail in Supplement 1 [56].

C. Two-Photon Gates

In addition to implementing single-qubit gates, a two-photon
entangling gate is needed for universal computation. A controlled
phase-flip gate cσz between two photonic qubits j and k can be
constructed through a sequence of three scattering interactions in a
manner similar to the protocol described by Duan and Kimble [9].
However, the beam splitter and phase shifter, which are needed to
implement the single-qubit gates in our scheme, allow us to apply
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only operations of the form shown in Eq. (1) to the photon–atom
system with each pass of a photon through the scattering unit.
This prevents us from performing the exact protocol described in
Ref. [9] despite the similarities of the proposed physical systems.

We can resolve this complication by modifying the protocol
to terminate with a measurement on the atom. We denote the
operation applied to the photon–atom state by a pass of photon j
through the scattering unit interacting with the atom a as

ζ ja
≡

(
Z π

4
B
) j

cσ
ja
z

(
B Z π

4

) j
. (4)

To implement cσ
jk
z between photons j and k, we pass photon j

through the scattering unit, then k, then j again, separated by
R y (±

π
2 ) rotations applied to the atom [56]. This results in the

state

ζ ja Ra
y (π/2)ζ

ka Ra
y (−π/2)ζ

ja (
|ψjk〉 ⊗ |+〉

)
, (5)

where |ψjk〉 is the arbitrary state of photons j and k and where the
atom is initialized to |+〉. After this scattering sequence, we meas-
ure the state of the atom, which projects the two-photon state to(
Z π

4
B ⊗ Z π

4
B
) (

B Z(−1)m π
2

B ⊗1
)
× cσ jk

z ×
(
B Z π

4
⊗ B Z π

4

)
|ψjk〉,

(6)
where the extraneous single qubit terms B Z π

4
, Z π

4
B , and

B Z(−1)m π
2

B are artifacts of the photons passing through the
beam splitter and phase shifter. These extra gates are not problem-
atic: when constructing a circuit from single-qubit gates and cσz,
they may be removed by programming previous and subsequent
single-qubit gates to include inverse gates.

It is worth noting two alternative implementations of the
photon–photon cσz gate. First, using the SWAP operation imple-
mented by Eq. (7), the states of one photonic qubit and the atom
can be exchanged, and the second photon can directly interact with
the state of the first, as discussed in Supplement 1 [56]. Second, the
protocol demonstrated by Ref. [12] can be implemented on this
system, reducing the amortized number of scattering passes per
cσz.

Our proposed device can thus implement arbitrary single-qubit
gates and a two-photon cσz gate. This comprises a universal gate set
[61], so the device can perform any quantum computation.

D. Arbitrary Circuit Compilation

To implement an arbitrary n-qubit operator U ∈U(2n), one could
employ the three-step circuit compilation process outlined in
Fig. 3. First, decompose U into a sequence of single-qubit gates
and cσz operations. This is a well-studied problem [62] and can
be done using the same operator preparation routine described
in our previous work [17], but with an additional O(n) speedup,
as this scheme has all-to-all instead of nearest-neighbor connec-
tivity between qubits. Second, represent each cσz as in Eq. (6)
and decompose each single-qubit gate via Euler angles into rota-
tions that may be teleported onto the photonic qubits. Finally,
use a classical control system to modify the adaptive rotations
applied to the atomic qubit based on the measurement outcomes
during operation and to explicitly correct for ε Pauli errors when
necessary. A more detailed discussion of the compilation process
and an example instruction sequence to implement a three-qubit
quantum Fourier transform can be found in Supplement 1 [56].

(a) (b)

(d) (c)

Fig. 3. Conceptual illustration of compiling a quantum circuit into
an instruction sequence to be performed on the device. (a) Generic tar-
get quantum circuit. (b) Decomposition into an equivalent circuit of
single-qubit and cσz gates. (c) The circuit is further decomposed into a
sequence of scattering interactions. This sequence can be assembled on
a classical computer into an instruction set with six distinct primitives
that correspond to physical actions. (d) The controllable elements of the
quantum device are the optical switches, cavity laser, and atomic state
readout.

E. Quantum State Readout

After applying the desired quantum operation using the circuit
compilation routine outlined above, the state of the photonic
qubits must be measured to obtain a classical result. This can be
done without the need for single-photon detectors with their
limited detection efficiencies by sequentially swapping the quan-
tum states of each photonic qubit with that of the atom and
repeatedly measuring the atomic state. To perform this SWAP
operation, we scatter the desired photonic qubit j against the atom
three times; between scattering operations, we apply the rotation
R y (π/2)Rx (π) to the atomic qubit. Denoting this rotation as ρa

and using ζ ja as defined in Eq. (4), it is easily verified that

(B Z π
4
) j ζ jaρaζ jaρaζ ja(Z π

4
B) j
= e iπ

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 ,
(7)

which is the SWAP operation up to a factor of−1. Here (B Z π
4
) j

and (Z π
4

B) j are the operations applied to photon j on the out-
going and return trip from the scattering unit, respectively [63].
Similar photon-atom and photon-ion swap operations have
previously been experimentally demonstrated with high fidelity
[64,65].

3. IMPERFECTION ANALYSIS

We now present a theoretical model to analyze the performance
of our scheme in the presence of experimental imperfections. The
main sources of error for our proposed scheme can be grouped into
three classes: (i) deformation of the input pulse shape after scatter-
ing off the atom–cavity system, (ii) atomic spontaneous emission
loss, and (iii) photon leakage due to attenuation and insertion loss
while propagating through the storage ring and optical switches.

In our analysis, we assume the cavity mode frequency ωc is
exactly resonant with the atom |g 1〉↔ |e 〉 transition frequency
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�1, since the detuning can be calibrated to be zero in both free-
space and nanophotonic systems [48]. Our design and simulations
are agnostic to the carrier frequency [66]. We also assume that rota-
tions of the atomic state using the cavity laser and measurement of
the state can be done with fidelity F ≈ 1, as both processes have
been demonstrated experimentally with infidelities significantly
lower than the error sources listed above [47,67–71]. For all sim-
ulations here, we choose a photon pulse width of τ = 100/κ and
time range (bin size) of 1t = 500/κ , and compute cooperativity
with fixed γs = κ/5, where κ is the decay rate of the cavity into the
waveguide, and γs is the atomic spontaneous emission rate. This
choice of parameters was motivated by a sample of experimental
cavity setups enumerated in Fig. 4 and results in a temporal bin
size of order 100 ns for κ/2π ∼ 1 GHz. Greater detail is given in
Supplement 1 [56].

We use the analytical technique described by Shen and Fan
[72,73] to exactly solve the single-photon transport problem of the
coupled atom–cavity–waveguide system and obtain the output
pulse φout(t) when the system is driven by an input pulse φin(t).
This treatment captures the full quantum mechanical response
of the system to a single-photon input Fock state for an arbi-
trary initialization of the atom without making the semiclassical
assumption of a weak coherent input state.

Figure 4(a) shows the output pulse shapes for a single-photon
Gaussian input pulse when the atom is initialized in states |g 0〉

or |g 1〉. For the |g 0〉 initialization, the response is identical to an
empty cavity, since the |g 0〉↔ |e 〉 transition is far-detuned from
the cavity resonant frequency. In this case, the output pulse is
slightly delayed from the input pulse. For the |g 1〉 initialization, the
photon is directly reflected from the front mirror of the cavity since
the dressed cavity modes are well separated in the strong coupling
limit from the input photon frequency by the vacuum Rabi split-
ting, so the delay is minimal. We denote the difference in the delays
of the |g 0〉 and |g 1〉 scatterings as1t01 (see inset). We compute the
pulse shape fidelityFshape as the overlap integral of the output pulse
with the input pulse after both pulses have been normalized to have
unit area, and the pulse shape infidelity is 1−Fshape. This quantity
describes only the mismatch of the shapes of the input and output
pulses, not the mismatch of the pulse areas; the infidelity due to
photon loss is computed as a separate quantity.

In Fig. 4(b), we plot the shape infidelity of various states as a
function of the single-atom cavity cooperativity C = 4g 2/κγs ,
where g is the atom–cavity coupling strength. The pulse shape
infidelity from scattering off the |g 1〉 state decreases to negli-
gible values as C increases, while the infidelity of |g 0〉 reaches an
asymptote at 8× 10−4 due to the delay of the output pulse by
a time independent of C . The infidelity from scattering against
|+〉 = (|g 0〉 + |g 1〉)/

√
2 thus reaches a value of 4× 10−4. Since

the atom will usually be initialized to the |+〉 state during opera-
tion of the device, it is desirable to minimize the infidelity of this
interaction. This can be done by equally distributing the delays
between the |g 0〉 and |g 1〉 states by delaying the reference pulse by
a time difference 1t01/2, adding path length c1t01/4 to the top
waveguide in Fig. 1(a). This results in a “delay corrected” infidelity
of 2× 10−4, which is independent of both cavity cooperativity (for
C � 1) and atomic state initialization.

In Fig. 4(b), we also plot the photon leakage probability for
a scattering interaction. Atomic spontaneous emission noise
from the excited |e 〉 state into modes other than the cavity mode
at a rate γs results in a partial loss of the photon, resulting in

(a)

(b)

(c)

Fig. 4. (a) Output pulse shapes for |g 0〉 and |g 1〉 initialization when
a cavity with cooperativity C = 180 is driven by a Gaussian input pulse.
The inset highlights the behavior near maximum: the |g 0〉 output pulse is
delayed, and the |g 1〉 output has reduced amplitude. (b) Shape infidelity
and photon leakage probability as a function of cavity cooperativity.
Solid blue lines show the pulse shape infidelity when the reference pulse
is delayed by 1t01/2. (c) Estimated single-qubit circuit depth achievable
while maintaining>50% fidelity as a function of cavity cooperativity and
photon attenuation per cycle, assuming one scattering interaction every
cycle and no error correction. Dotted lines show various experimentally
demonstrated cooperativity values in similar cavity systems. Lines 1–10
correspond respectively to Refs. [12,16,46,48–51,74,75], and [76].

an output pulse with total photon number
∫

dt|φout(t)|2 < 1.
We calculate the probability Ps of spontaneous emission loss as

Ps = 1−
∫

dt|φout(t)|2∫
dt|φin(t)|

2 . Spontaneous emission noise applies only

to the |1〉 ⊗ |g 1〉 component of the photon⊗ atom state; since
the atom will usually be initialized to the |+〉 state, if we average
over the possible input photon states, we obtain an average leakage
probability of P̄s = Ps /4. This average photon loss probability
is plotted as the red line in Fig. 4(b) and ranges from about 5% to
0.0005% over the range of cooperativity values shown.

Finally, we account for loss due to attenuation in the optical
storage ring and insertion loss from the switches as an average loss
per cycle L . To estimate the maximum circuit depth D attainable
with an overall fidelity Ftarget, we compute a “bulk fidelity” per
cycle accounting for shape infidelity, spontaneous emission loss,

https://doi.org/10.6084/m9.figshare.16862155
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and attenuation while propagating through the storage ring and
optical switches. For simplicity, we assume the circuit operates on
only a single photonic qubit and that the photon is scattered against
the atom with every pass through the storage ring. The achievable
circuit depth operating with success probability Ftarget is thus the
maximum D satisfying [Fshape × (1− P̄s )× (1− L)]D ≥Ftarget,
which is plotted as a function of cavity cooperativity and propa-
gation loss in Fig. 4(c) for Ftarget = 50%. Using optimistic but
not unrealistic values for cooperativity [51,76,77] C = 104 and
cycle loss L = 10−4, we compute a bulk fidelity of F ≈ 99.95%.
This allows for an estimated depth of D≈ 2000 scattering oper-
ations while maintaining 50% success rate, and results in an error
probability per gate (EPG) of ∼5× 10−4, below the estimated
∼10−3 EPG threshold for fault tolerance [78–81]. Additionally,
photon loss, which is likely the main error mechanism, can be effi-
ciently corrected up to a per-gate loss of∼10−2 using concatenated
codes [82].

4. DISCUSSION

In this work, we have shown how to use a single controllable
quantum emitter to perform any quantum operation on a
set of time-multiplexed photonic qubits. Related to but dis-
tinct from this paper are proposals for generating time- and
frequency-multiplexed 2D cluster states using a single or pair of
quantum emitters [83–86] or by using homodyne measurement
of continuous-variable quantum systems [87], and experimental
demonstrations using parametric nonlinearities [88,89]. Although
2D cluster states are a universal resource for measurement-based
quantum computation [59], the schemes that prepare these states
can apply only a single type of quantum operation to photonic
qubits, and require single-photon detectors, with their associated
limitations, for universality and state readout. In contrast, our
scheme directly implements the quantum circuit model of QC, can
deterministically construct any quantum gate, and can perform
state readout without the need for photon detectors.

Our work also builds upon the well-known results of Ref.
[9]. The physical setups are indeed similar: a cavity containing
a controllable three-level atom that can mediate interactions
between scattered photons. However, Ref. [9] showed how the
atom–cavity system can apply a fixed cσz operation to a pair of
photonic qubits, while our work shows how a loop-based design
incorporating the cavity can perform any quantum operation on
any number of photonic qubits. Notably, the single-qubit gate tele-
portation mechanism described in Sections 2.A and 2.B and the
photodetector-free circuit compilation and state readout routines
described in Sections 2.D and 2.E are, to our knowledge, unique to
this work.

The main practical advantage of our scheme is the experimen-
tal simplicity of the design. Compared to other photonic QC
approaches, our scheme shows a pathway to implement scalable,
deterministic, gate-based quantum computation with photonics.
Also, our scheme does not require single-photon detectors, which
are a limitation for photonic approaches due to their low detection
efficiencies. Compared to other platforms for QC where qubits are
individual physical structures, such as superconducting circuits
and trapped ion systems, having only one controllable qubit pro-
vides a significant advantage to scalability: to add more qubits to
our design requires just lengthening the fiber loop, while to add

more qubits to a superconducting device requires adding complex
individually addressable components.

However, our scheme is not without drawbacks: the design
requires high cavity cooperativity and low fiber attenuation, which
are challenging but feasible to implement [74], and it relies on
optical switches with very low insertion losses, although recent
advances in lithium niobate modulators [90] may soon allow
for this. Additionally, although having only a single controllable
qubit does greatly simplify the experimental setup, it prevents
two-qubit and most single-qubit gates in a quantum circuit from
being performed in parallel.

More broadly, if we generalize the photon storage mechanism
for our proposed device and consider synthetic dimensions other
than time multiplexing, we could potentially further improve the
scalability of our design. Instead of using counterpropagating opti-
cal modes, one could encode each qubit in the polarization basis
and combine with fiber or free-space storage loops, as in Refs. [91–
93]. With suitable design of the atom–cavity interacting system,
frequency [31,32] or angular momentum modes [41] could be also
used as an alternative synthetic dimension, which could potentially
mitigate the reliance of our design on low-loss optical switches, as
demonstrated for heralded single-photon sources [94–97]. These
concepts would naturally lend themselves to studying quantum
many-body physics of interacting Hamiltonians in synthetic space
[22], which is difficult to realize in purely photonic platforms
without the strong single-photon nonlinearity of the atom that we
employ here [98,99].

5. CONCLUSION

In this paper, we have presented a scheme for universal quantum
computation using a single coherently controlled atom to indi-
rectly manipulate a many-photon quantum state. We have shown
that arbitrary single-qubit gates can be deterministically con-
structed from rotations applied to the atomic qubit and teleported
onto photonic qubits via projective measurements. Using similar
scattering processes, two-photon cσz gates can be implemented,
and readout of the photonic quantum state can be done using only
atomic measurements with efficiencies far greater than that of
state-of-the-art photon detectors. Our proposed scheme has high
fidelity even in the presence of realistic experimental imperfections
and offers significant advantages in required physical resources and
experimental feasibility over many existing paradigms for photonic
quantum computing.
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