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We present a photonic integrated circuit architecture for a quantum programmable gate array (QPGA) capable
of preparing arbitrary quantum states and operators. The architecture consists of a lattice of phase-modulated
Mach-Zehnder interferometers, which perform rotations on path-encoded photonic qubits, and embedded quan-
tum emitters, which use a two-photon scattering process to implement a deterministic controlled-σz operation
between adjacent qubits. By appropriately setting phase shifts within the lattice, the device can be programmed
to implement any quantum circuit without hardware modifications. We provide algorithms for exactly preparing
arbitrary quantum states and operators on the device, and we show that gradient-based optimization can train
a simulated QPGA to automatically implement highly compact approximations to important quantum circuits
with near-unity fidelity.
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I. INTRODUCTION

There has been growing interest in universal photonic
devices which can be dynamically reconfigured to implement
any linear optical transformation to a set of coherent optical
modes [1–4]. These devices are often implemented as a mesh
of phase-modulated Mach-Zehnder interferometers (MZIs)
which can be configured progressively [1] or simultaneously
[5] to apply arbitrary unitary transformations to an input
vector of spatial modes. Such devices have a wide range of
applications in classical information processing [4,6–10], and
integrated universal photonic circuits provide an especially
promising hardware platform for high-throughput, energy-
efficient machine learning [11–14].

These devices also have promising applications in quan-
tum information processing: recent demonstrations of boson
sampling [15], quantum transport dynamics [16], photonic
quantum walks [17], counterfactual communication [18], and
probabilistic two-photon gates [19] have all been performed
on this type of programmable photonic hardware. Photonic
systems offer a range of unique advantages over other sub-
strates for quantum information processing: optical quantum
states have long coherence times and can be maintained
at room temperature, since they interact very weakly with
their environment; photonic qubits are optimal information
carriers for distant nodes within quantum networks; and
MZIs provide simple, high-fidelity implementations of single-
qubit operations which can be integrated into a photonic
chip.

However, photonic quantum computation poses several
intrinsic difficulties. The noninteracting nature of pho-
tons makes implementing deterministic multiphoton quan-
tum gates a challenge; many existing proposals [20] and
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demonstrations [19] of linear optical quantum computing rely
on nondeterministic “heralded” gates or encode multiqubit
quantum states in exponentially many spatial modes [21].
Since photons must propagate at the speed of light, photonic
quantum processing must be done along the path of the photon
by sequential optical components, making complex quantum
circuits prohibitively large to implement with free-space op-
tics. These systems and even some integrated photonic circuits
also often suffer from a lack of reconfigurability, as the design
of task-specific optical circuity must be modified to perform
different computations [22].

Here we describe a photonic lattice architecture for a re-
configurable and universal quantum programmable gate array
(QPGA) which can implement any quantum operation, in
principle deterministically and with perfect fidelity in the
case of ideal physical components. Our design is similar to a
universal linear optical component [2] but employs nonlinear
interactions from precisely placed quantum emitters to enable
an N-qubit state to be encoded using O(N ) number of spatial
modes. The proposed device can be programmed to imple-
ment any quantum circuit decomposed into one- and two-
qubit gates performed by physical lattice components on an
integrated photonic circuit. Qubits are path-encoded by single
photons in a superposition of pairs of waveguides; phase-
modulated MZIs apply arbitrary single-qubit operations and
strongly-coupled quantum emitters induce two-photon scat-
tering processes which implement controlled gates between
adjacent qubits.

We provide exact algorithms in Sec. III for obtaining
the appropriate phase shifter parameters to prepare arbitrary
quantum states and operators on-chip. In Sec. IV, we dis-
cuss how optimization techniques from machine learning
can be used to automatically discover high-fidelity approx-
imations to desired quantum operations which are signifi-
cantly more compact than their explicitly decomposed exact
representations.
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FIG. 1. The architecture for the quantum programmable gate array shown at various levels of detail. (a) Physical layout of a four-qubit
QPGA with a depth of four layers. Each logical qubit is path-encoded by a single photon in a pair of waveguides, with the parity of which
waveguide represents |0〉 and |1〉 depending on the parity of the qubit index. (b) A quantum circuit diagram depicting the logical representation
of the operator performed by the QPGA in the first panel. The “switch” symbols between two-qubit operations indicate that the connectivity
of the gates can be reconfigured without changing the physical chip architecture. Solid control dots indicate cσz, while open dots indicate
cσz. (c) A single unit cell within the lattice. The ζ , ξ, θ, φ phase shifters are continuously variable trainable parameters, while η = 0, π

2
determines the connectivity of the cσz gates between neighboring qubits. The pink dots represent quantum emitters embedded a distance a
between two dichroic reflectors, depicted as blue and red rectangles, which selectively reflect light at frequencies ω and ω′, respectively. The
delay lines are matched in length to ω′ and terminate in reflectors. (d) Four-level energy structure of the quantum emitters embedded in the
waveguides.

II. PHOTONIC QUANTUM PROGRAMMABLE
GATE ARRAYS

The concept for a photonic quantum programmable gate
array is shown in Fig. 1(a), and the equivalent logical
quantum circuit is depicted in Fig. 1(b). The architecture
consists of a set of waveguide pairs which each contain
single-photon pulses. A lattice of phase-modulated MZIs
performs single-qubit rotations, and circulators, MZIs, and
embedded four-level systems (4LS) collectively implement
two-qubit controlled-σz (cσz) gates between adjacent qubits.
By choosing suitable phase shifter parameters, arbitrary mul-
tiqubit quantum states and operators can be implemented
from single-qubit and cσz primitives within the lattice, as
discussed in Sec. III. In the following sections, we discuss the
mechanisms of each component of the architecture in greater
detail.

A. Single-qubit operations

Qubits are implemented as temporally separated single
photons, each injected into a pair of waveguides at a frequency
ω and with a long pulse length τ � ω−1. All physical gates
within the device conserve photon occupancy within waveg-
uide pairs. A chip designed to process N-qubit states has 2N

number of waveguides, and the computational basis {|0〉 , |1〉}
of each qubit is represented by the photon occupancy of the
top and bottom waveguide in each pair, with parity alternating
with qubit index as shown in Fig. 1(a).

Single-qubit gates are implemented with a standard ap-
proach using phase-modulated MZIs. An MZI with four
phase shifters in the configuration shown in the upper half
of Fig. 1(c) can apply any operation U ∈ U(2) to its in-
puts, which suffices to implement arbitrary single-qubit gates
[1,19,20]. Assuming the photons are spectrally narrow about
ω (see Appendix A for a more complete treatment of arbitrary
photon spectra), the transformation implemented by the MZI
on the input modes takes the form

U (ζ , ξ , θ, φ)

= Rζ
ξ HRθ

0HRφ

0

= 1

2

(
eiζ 0
0 eiξ

)(
1 1
1 −1

)(
eiθ 0
0 1

)(
1 1
1 −1

)(
eiφ 0
0 1

)

= 1

2

[
ei(ζ+φ)
(
eiθ + 1
)

ei(ξ+φ)
(
eiθ − 1
)

eiζ
(
eiθ − 1
)

eiξ
(
eiθ + 1
)
]
, (1)
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where H is the Hadamard operator,1 and Rφ1
φ2

denotes a phase
shift of φ1 applied to the top waveguide and φ2 to the bottom.
Here, and for the rest of this paper, successive matrices are
left-multiplied to be consistent with circuit diagrams.

B. Two-photon gates

In addition to arbitrary single-qubit gates, the QPGA needs
to be able to implement two-qubit entangling operations in
order to be a universal quantum device. This is accomplished
by nonlinear interactions between two photons scattering off
of a pair of quantum emitters embedded within the waveg-
uides. The emitters could be implemented by quantum dots
coupled to photonic crystal waveguides [23–25] or plasmonic
nanowires [26], diamond vacancy centers [27–29], or many
other experimental setups. There have been many propos-
als for implementing two-qubit gates using scattering-based
processes [30–34]; the scattering dynamics discussed in this
section are adapted from the scheme described by Zheng et al.
[35], with the notable difference that spatial modes rather
than momentum states form the computational basis for the
physical qubits. In this section we show that this scattering
process implements a cσz operation up to local phase shifts.2

Consider an arbitrary two-qubit logical input state |�〉 =
α |11〉 + β |10〉 + γ |01〉 + δ |00〉. The state consists of two
photons superpositioned over two pairs of waveguides shown

in Fig. 1. Define bosonic operators â[q]†

0,d , â[q]†

1,d which create a
photon for qubit q with direction d ∈ {L, R} in the |0〉 and
|1〉 waveguide, respectively. The corresponding two-photon
physical input state |ψ〉 just before (1a, 1b) is

|ψ〉 = αâ[1]†

1,R â[2]†

1,R |∅〉 + βâ[1]†

1,R â[2]†

0,R |∅〉

+ γ â[1]†

0,R â[2]†

1,R |∅〉 + δâ[1]†

0,R â[2]†

0,R |∅〉 , (2)

where |∅〉 denotes the vacuum state (not to be confused with
the computational |0〉 state).

Consider the lower half of Fig. 1(c). Two circulators at (1a,
1b) direct the |1〉 modal component of each photon into the
waveguides at (2a, 2b). The photons pass through an MZI at
(3), which has a transfer matrix3:

T (η) = Rπ/2
0 HRη

0HRπ/2
0 = 1

2

(−eiη − 1 ieiη − i
ieiη − i eiη + 1

)
. (3)

1Whether to use H = 1√
2
[1 1
1 −1] or B = 1√

2
[1 i

i 1] to represent the

beamsplitter operation is somewhat a matter of convention, with
classical optics tending to prefer the latter and quantum information
often using the former. They are equivalent up to a phase shift of ζ , θ

by π/2.
2Lattice cells of inverted parity [see Fig. 1(a)] actually implement

cσz such that σz is applied only to |00〉, but the dynamics are the
same, so for brevity we discuss only one parity here.

3The π/2 phase shifts are necessary to conserve photon number
within each waveguide pair by making the round-trip transfer matrix
T (η)ᵀT (η) diagonal.

Define bosonic operators b̂top†

d , b̂bot†
d , which create a photon

with frequency ω in direction d at (4a, 4b) respectively.4 The
transfer matrix acts only on the |1〉 component of each photon,
so we can relate the operators

(
â[1]†

1,R

â[2]†

1,R

)
= T (η)

(
b̂top†

R

b̂bot†
R

)
,

(
â[1]†

1,L

â[2]†

1,L

)
= T ᵀ(η)

(
b̂top†

L

b̂bot†
L

)
, (4)

while â[q]†

0,d are unaffected. Using the relations described in
Eq. (4), the input state after propagating through the MZI at
(4a, 4b) is

|ψ〉 = eiη α

2
sin η
((

b̂top†

R

)2 − (b̂bot†
R

)2) |∅〉

− eiηα cos η b̂top†

R b̂bot†
R |∅〉

− eiη/2
(
β cos

η

2
â[2]†

0,R + γ sin
η

2
â[1]†

0,R

)
b̂top†

R |∅〉

− eiη/2
(
β sin

η

2
â[2]†

0,R − γ cos
η

2
â[1]†

0,R

)
b̂bot†

R |∅〉

+ δâ[1]†

0,R â[2]†

0,R |∅〉 . (5)

The b̂† photons propagate down the waveguides from (4a, 4b)
until they interact with the embedded quantum emitters at (5a,

5b), while we assume the system acts trivially on the â[q]†

0,R
photons.

We now consider the sections between (4a) to (6a) and
(4b) to (6b). We will show that the two-photon state, upon
passing through these sections, will gain a π phase shift
applied only to the first term of |ψ〉 in Eq. (5), and thus a cσz

operation is implemented on the input state |�〉. To show this,
we first consider the dynamics of the photons in the section
between sites (4a) to (6a) within a single isolated waveguide;
the lower waveguide between (4b) and (6b) behaves identi-
cally. For simplicity, while we consider each waveguide in

isolation, we drop the b̂{top,bot} superscripts and omit the â[q]†

0,R
operators.

The regions of interest are shown in the middle of Fig. 1(c),
which contain quantum emitters with the four-level energy
structures shown in Fig. 1(d). The energy level of each state |i〉
is �i; we assume that �4 − �3 = �2 − �1 = ω and denote
ω′ ≡ �3 − �2. The quantum emitters at (5a, 5b) are placed
a distance a between a pair of narrow-band filters, which are
reflective at frequencies ω and ω′, respectively, and transpar-
ent otherwise. Reflectors terminate the ends of the waveguides
at (6a, 6b); the waveguides between the ω′ filters and the
reflectors form a delay line with a length which is a multiple
of 2π

ω′ . The real-space Hamiltonian that describes the coupling
of such an atom to the waveguide without the filters is given

4The b̂top† , b̂bot† notation was chosen to avoid confusion with the
qubit indices or basis states â[q]†

{0,1}.
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by [35–37]

H = h̄

i

∫
dx

[
vgb̂†R(x)

∂

∂x
b̂R(x) − vgb̂†L(x)

∂

∂x
b̂L(x) + vr ĉ†(x)

∂

∂x
ĉ(x)

]
+ h̄

4∑
n=1

�n|n〉〈n|

+ h̄
∫

dx δ(x)

[(√
�vg

2
b̂†R(x) +

√
�vg

2
b̂†L(x) +

√
�′vr ĉ†(x)

)
(|1〉〈2| + |3〉〈2| + |3〉〈4|) + H.c.

]
. (6)

Here, the first term describes the free waveguide dynamics, the
second term describes the embedded four-level system shown
in Fig. 1(d), and the third term is the interaction Hamiltonian.
The decay rate into the waveguide is �, the coupling �′
describes the extrinsic loss of the excited states to degrees of
freedom outside the waveguide, which is modeled as emission
into a reservoir by the ĉ†, ĉ operators, and vg {vr} is the group
velocity of the photons in the waveguide {reservoir}. The
transition frequencies ω,ω′ obey |ω − ω′| � �.

The scattering dynamics can be summarized by four steps
occurring simultaneously in the top and bottom waveguides.
(1) Photon A at frequency ω causes the atom, which is ini-
tialized in state |1〉, to partially transition from |1〉 → |3〉 with
an amplitude of |3〉 corresponding to the photon occupancy
in the waveguide. This emits an auxiliary photon A′ with
frequency ω′, which is reflected by one of the narrow-band
mirrors and travels down the delay line. (2) While photon A′
is in the delay line, photon B, also at frequency ω, is injected
into the system. Interaction with the |1〉 component of the
atomic states results in the transition |1〉 → |3〉 and releases
an auxiliary photon B′ with frequency ω′ down the delay line,
while interaction with the |3〉 component imparts a π phase
shift onto B and reflects it back into the waveguide. (3) Photon
A′ arrives back at the 4LS after traversing the delay line. By
time-reversal arguments, sending the output photon A′ back
into the atom retrieves photon A, which exits the inner cell
through its original waveguide. (4) Photon B′ arrives back at
the 4LS, retrieving photon B as in step 3.

A conceptual animation depicting the two-photon scatter-
ing process in a QPGA cell can be found in the Supplemental
Materials [38]. We now discuss each step in greater detail.
Derivations of the reflection coefficients and output states can
be found in Appendix B.

Step 1. At time t = 1, photon A with frequency ω and
state |ψ in

1 〉 = αA |ω〉 + βA |∅〉 is incident on the 4LS, which is
initialized to state |1〉. From calculations detailed in Appendix
B, the output state is∣∣ψout

1 〉 = αA(r11 |ω〉 ⊗ |1〉 + r13 |ω′〉 ⊗ |3〉) + βA |∅〉 ⊗ |1〉 ,

(7)
where the amplitudes r11 and r13 are

r11 = e2iωa �′ − �(e2iω′a − e−2iωa)

−�′ + �(e2iω′a + e2iωa − 2)
, (8)

r13 = �(e2iωa − 1)(e2iω′a − 1)

−�′ + �(e2iω′a + e2iωa − 2)
. (9)

If the boundary condition that

a = nπ

ω + ω′ for some n ∈ N (10)

is satisfied, then in the strong-coupling limit (�/�′ → ∞),
r11 = 0 and r13 = −1, so |ψout

1 〉 = −αA |ω′〉 ⊗ |3〉 + βA |∅〉 ⊗
|1〉. Thus, the atom transitions from |1〉 → |3〉, stores the input
photon, and releases an auxiliary A′ photon at frequency ω′
into the delay line.

Step 2. At time t = 2, photon B with state |ψ in
2 〉 = αB |ω〉 +

βB |∅〉 is incident on the 4LS. After scattering, the output state
is

|ψout
2 〉 = αBr11αAr11 |ω〉 ⊗ |ω〉 ⊗ |1〉

+ αBr13αAr11 |ω′〉 ⊗ |ω〉 ⊗ |3〉
+ αBR3αAr13 |ω〉 ⊗ |ω′〉 ⊗ |3〉
+ αBr11βA |ω〉 ⊗ |∅〉 ⊗ |1〉
+ αBr13βA |ω′〉 ⊗ |∅〉 ⊗ |3〉
+ βB |∅〉 ⊗ |ψout

1 〉 , (11)

where the states are ordered as (photon B ⊗ photon A ⊗
atom), and where the reflection amplitude of the resonant
|3〉 → |4〉 → |3〉 transition is

R3 = �′e2iωa + �(1 − e2iωa)

−�′ − �(1 − e2iωa)
. (12)

As before, if the condition of Eq. (10) is satisfied, then
R3 = −1 = eiπ , so photon B gains a π phase. For simplicity,
in the rest of this section, we focus on the case where Eq. (10)
holds. Substituting the on-resonance coefficients of r11 → 0,
r13 → −1, and R3 → −1, the output state at the end of step 2
is

|ψout
2 〉 = αBαA |ω〉 ⊗ |ω′〉 ⊗ |3〉 − αBβA |ω′〉 ⊗ |∅〉 ⊗ |3〉

− βBαA |∅〉 ⊗ |ω′〉 ⊗ |3〉 + βBβA |∅〉 ⊗ |∅〉 ⊗ |1〉 .

(13)

Step 3. At time t = 3, photon A′ has traveled down the
delay line, which has a length which is a multiple of 2π

ω′ and is
returning to the atom. Its frequency ω′ is resonant with the
|3〉 ↔ |2〉 transition, and the reflection coefficients r33 and
r31 have expressions which are identical to Eqs. (8) and (9),
respectively, except with ω,ω′ exchanged, such that when
a = nπ

ω+ω′ , we have that r33 = 0 and r31 = −1.
The state of the returning A′ photon is |A′〉 = −αA |ω′〉 +

βA |∅〉, and it only interacts with the |∗〉 ⊗ |ω′〉 ⊗ |3〉 compo-
nents of the system state, mapping |∗〉 ⊗ |ω′〉 ⊗ |3〉 �→ −1 ·
|∗〉 ⊗ |ω〉 ⊗ |1〉. Therefore, the system state at the end of step
3 is∣∣ψout

3

〉 = − αBαA |ω〉 ⊗ |ω〉 ⊗ |1〉 − αBβA |ω′〉 ⊗ |∅〉 ⊗ |3〉
+ βBαA |∅〉 ⊗ |ω〉 ⊗ |1〉 + βBβA |∅〉 ⊗ |∅〉 ⊗ |1〉 .

(14)
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Step 4. At time t = 4, photon B′ is returning to the 4LS
from the delay line. The reflection coefficients are the same
as in step 3, and photon only interacts nontrivially with the
|ω′〉 ⊗ |∗〉 ⊗ |3〉 components of |ψout

3 〉, so the final output state
is ∣∣ψout

4

〉 = − αBαA |ω〉 ⊗ |ω〉 ⊗ |1〉 + αBβA |ω〉 ⊗ |∅〉 ⊗ |1〉
+ βBαA |∅〉 ⊗ |ω〉 ⊗ |1〉 + βBβA |∅〉 ⊗ |∅〉 ⊗ |1〉 .

(15)

At the end of the gate operation, the emitter is restored to
its original |1〉 state and is disentangled from photons A and
B, and the two-photon state acquires a π phase shift only on

the component corresponding to the presence of both A and B.
Thus, the gate operation in the computational basis of spatial
modes is

U =

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

⎞
⎟⎠, (16)

which is exactly the quantum controlled-σz gate.
We now return to describing the evolution of the state

where we left off at Eq. (5). Using the |B〉 ⊗ |A〉 ⊗ |4LS〉
ordering from Eqs. (11)–(15), we rewrite this equation to
describe the states of the top and bottom photon-photon-4LS
systems:

|ψ top〉 = +eiη α

2
sin η |ω〉 ⊗ |ω〉 ⊗ |1〉 −

(
eiηα cos η + eiη/2β cos

η

2

)
|ω〉 ⊗ |∅〉 ⊗ |1〉

− eiη/2γ sin
η

2
|∅〉 ⊗ |ω〉 ⊗ |1〉 + δ |∅〉 ⊗ |∅〉 ⊗ |1〉 , (17)

|ψbot〉 = −eiη α

2
sin η |ω〉 ⊗ |ω〉 ⊗ |1〉 − eiη/2β cos

η

2
|ω〉 ⊗ |∅〉 ⊗ |1〉

−
(

eiηα cos η + eiη/2γ cos
η

2

)
|∅〉 ⊗ |ω〉 ⊗ |1〉 + δ |∅〉 ⊗ |∅〉 ⊗ |1〉 . (18)

The photons scatter off of the quantum emitters, producing
ancillary photons which travel down the delay lines and back
and release the original photons, but with a π phase shift
applied to the |ω〉 ⊗ |ω〉 ⊗ |1〉 component of the state where
both photons are present. Thus, the first term changes sign
for each of Eqs. (17) and (18), and the output state when the
photons finally return to the MZI in Fig. 1(c) at (4a, 4b) is as
follows:

|ψ〉 = eiη α

2
sin η
(−(b̂top†

L

)2 + (b̂bot†
L

)2) |∅〉

− eiηα cos η b̂top†

L b̂bot†
L |∅〉

− eiη/2
(
β cos

η

2
â[2]†

0,L + γ sin
η

2
â[1]†

0,L

)
b̂top†

L |∅〉

− eiη/2
(
β sin

η

2
â[2]†

0,L − γ cos
η

2
â[1]†

0,L

)
b̂bot†

L |∅〉

+ δâ[1]†

0,R â[2]†

0,R |∅〉 , (19)

where we assume that the photons described by the â[q]†

0,R
operators in Eq. (5) have been reflected and now travel in the
L direction.

Propagating this state through the MZI at (3) one last time
using |ψout〉 = T ᵀ(η) |ψ〉, we obtain the final output state at
(2a, 2b):

|ψout〉 = e2iηα cos(2η)â[1]†

1,L â[2]†

1,L |∅〉
− e2iη α

2
sin(2η)
((

â[1]†

1,L

)2 − (â[2]†

1,L

)2) |∅〉

+ eiηβâ[1]†

1,L â[2]†

0,L |∅〉
+ eiηγ â[1]†

0,L â[2]†

1,L |∅〉
+ δâ[1]†

0,L â[2]†

0,L |∅〉 . (20)

The output photons propagate to the circulators at (1a, 1b)
and are reinjected back into their original waveguides. In
order to preserve photon numbers between waveguide pairs,
the second term in Eq. (20) must be zero, since (â[1]†

1,L )2 and

(â[2]†

1,L )2 correspond to injection of two photons into the same
waveguide. This fact constrains η to phase shifts which are
multiples of π

2 .
We note the gate action of the entire system at η = 0 is

identity, and the action at η = π
2 is the cσz operation, up to

a phase shift of π
2 , which can be included in the ζ , ξ phase

shifters at the subsequent column in the lattice:

U (η = 0) =

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎠ = 1, (21)

U
(
η = π

2

)
=

⎛
⎜⎝

1 0 0 0
0 i 0 0
0 0 i 0
0 0 0 1

⎞
⎟⎠ = (Rπ/2

0 ⊗ R0
π/2

)
cσz. (22)

To summarize the results of this section, the photons are
directed by circulators through an MZI and toward the scatter-
ing sites. Depending on the value of η, the four-level systems
either interact with one (η = 0) or two (η = π

2 ) photons, and
they impart a π phase shift onto the two-photon component
of the state they receive. The photons retrace their path and
return to their original waveguides to be operated on by the
next column of gates in the lattice.

C. Fidelity and fault tolerance

The calculations in the previous sections have shown that
in an ideal case, our photonic architecture can perfectly imple-
ment arbitrary single-qubit operators and cσz. However, this
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makes some assumptions about the construction of the device.
Namely, we assume that waveguides are lossless, that photons
are injected with frequency ω and vanishing spectral width
δω → 0, and that the excited states of the scattering systems
are lossless with �′ → 0 such that the Purcell enhancement
factors are large, with P = �/�′ → ∞.

In reality, photons would have finite spectral width and the
local emitters would have finite Purcell factors, meaning the
QPGA would implement logical operators with fidelity below
unity. As photons propagate through the imperfect gates im-
plemented by the physical circuit, the errors will in general
accumulate to render very deep circuits useless. However, this
can be addressed by a variety of error-correcting methods.
The errors which could occur in a physical implementation of
this circuit can broadly be classified into three types: spectral
unitary errors from the MZIs, depolarizing errors from the
scattering sites, and photon loss from the quantum emitters
and waveguides.

MZIs acting on photons with finite spectral width (and
dispersive effects in the waveguides) can reshape the photon
pulse and transmit a portion of the pulse to the top and bottom
waveguides, which differs from the target amount. The photon
is not lost to or entangled with the environment, so this error
can be represented by a unitary operation Ũ with a characteris-
tic error ε which acts as Ũ |ψ in〉 = √

1 − ε |ψ targ〉 + ε |ψ targ
⊥ 〉,

where |ψ targ
⊥ 〉 is some state orthogonal to the desired output

state |ψ targ〉 [39]. This error can, in principle, be trained
around using the gradient-based circuit optimization approach
discussed in Sec. IV. However, as shown in Appendix A, the
fidelity of the MZIs can be quite high even for short pulses (a
1-ns pulse has infidelity of 10−10), so the dominant source of
error would come from the scattering operations.

The infidelity in the two-photon gates F−1 = 1 −
| 〈ψA, ψB, ψ4LS| cσ AB

z ⊗ 14LS |ψA, ψB, 1〉 |2 introduced by fi-
nite excitation loss and spectral width results in a photon-
photon-emitter state which is not fully entangled during op-
eration nor fully disentangled at the end of the operation.
If we trace out the degrees of freedom of the four-level
system, we obtain a mixed two-photon output state, which
is the desired output state, but with a probability p = F−1

of applying a second σz operation which undoes the original
gate action. This corresponds to the well-studied quantum
depolarizing error model [40–42], which describes quantum
gates as being faulty by randomly applying Pauli operators
with some effective error probability per gate (EPG) [42,43].
Fault tolerance5 requires an EPG below a certain threshold
pth, usually estimated as pth ≈ 10−4 [46,47], but for some
architectures and scenarios as high as pth ≈ 10−2 [43]. In this
system, the EPG approaches zero as the Purcell factor tends
to infinity, with P = 40 yielding a 6% infidelity [35].

Photon leakage from the waveguide or from spontaneous
emission from the scattering sites represents the dominating
error mechanism in this design and can be completely and

5It should be noted that while cσz and Clifford gates have fault-
tolerant constructions, it has been shown that no single error-
correcting code has transversal implementations for all gates required
for universal and classically nonsimulable circuits [44], necessitating
additional constructions if other gates are to be included [45].

efficiently corrected using concatenated coding [30,48] or by
using one of the Bose-Chaudhuri-Hocquenghem family of
codes [49] to correct for erasure errors [50]. Such codes allow
for loss thresholds per gate above 1.7% [51] and possibly as
high as 5% [50], corresponding to Purcell factors of P ≈ 100
to P ≈ 30 [35].

Relatively small QPGAs which do not employ error cor-
rection may already be feasible to implement. If one assumes
current realistic values for silicon waveguide loss of 0.3
dB/cm [52], quantum emitters with a Purcell factor of P = 80
[53], and a unit-cell path length of 500 μm, then photon loss
is about 4% per unit cell. Thus, the total loss could be kept
below 50% for a circuit as large as 16 layers, which is suf-
ficient to perform high-fidelity approximate quantum Fourier
transforms on four qubits (see Fig. 7). This estimate ignores
the optical circulators, the details of which are not critical to
the design and which currently have comparatively high losses
of around 3–6 dB [54,55], which would bring the loss per
unit cell to about 50%. With some modification to the QPGA
design, one can conceive a similar device which performs the
same function but does not require optical circulators, e.g., by
using a single unit cell to emulate a large gate array while
storing many photon pulses in a large ring. However, with
rapid experiments in waveguide-cavity systems and nonrecip-
rocal on-chip devices, larger-scale QPGAs may be feasible to
implement in the foreseeable future.

III. EXACT QUANTUM STATE AND OPERATOR
PREPARATION

Having established how the design presented in Sec. II
acts on physical photonic qubits, we now discuss how the
idealized logical model of the device can be programmed to
prepare quantum states and to implement quantum operators.
We assume no error in the device here and describe algorithms
to implement the desired actions with perfect fidelity, albeit
sometimes using circuits of great depth. In reality, finite
device errors may make the more compact approximate circuit
decompositions discussed in Sec. IV more relevant than the
exact decompositions presented in this section.

A. Universality of the design

The MZIs in the lattice can implement any single-qubit
gate by parametrizing it through the ζ , ξ , θ, φ phase shifts.
The nonlinear interactions between waveguide pairs imple-
ments cσz, which can be used in conjunction with H to imple-
ment a controlled-NOT (cσx) gate6 as cσx = (1 ⊗ H )cσz(1 ⊗
H ) [42]. Since the set of single-qubit operations and cσx gate
comprises a universal gate set [56], the device is universal,
such that a sufficient number of layers can be used to imple-
ment an arbitrary multiqubit gate.

Phase shifter parameters which implement various com-
mon single- and two-qubit quantum gates are detailed in

6Due to the nearest-neighbor connectivity of the architecture, cσx

between non-adjacent qubits must be implemented with a sequence
of SWAP gates, which can in turn be implemented using three cσx

gates. [42]
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FIG. 2. State preparation algorithm to map |0〉⊗n �→ |ψ〉.

Appendix C, Tables I and II. Notably, two-qubit gates can
have differing cσz parities, meaning that some require an
even or odd number of successive cσz gates to implement.
This would be problematic in an architecture with fixed cσz

connectivity, as aligning circuit elements within a fixed lattice
would be impossible; this necessitates a mechanism such as
the η-shifted MZI described by Eq. (3), which can toggle the
gate action between qubits.

B. State preparation

Arbitrary quantum states can be prepared on a lattice
with nearest-neighbor connectivity using a circuit based on
Ref. [57] consisting of a sequence of multicontrolled single-
qubit rotations. Although the general worst-case complexity
of this algorithm is O(n22n), an important class of quantum
states, including Dicke states [58] and general symmetric
states [57], can be efficiently prepared using such a lattice with
a depth which is polynomial in the number of qubits.

Suppose we have a state |ψ〉 =∑q∈{0,1}n αq |q〉 with αq ∈
C which we would like to prepare. Let ξx for x ∈ {0, 1}k and
1 � k � n denote the projection of |ψ〉 onto the computa-
tional basis vector |x〉, tracing over all qubits subsequent to
k:

ξx =
∑

x′∈{0,1}n−k

〈x, x′|ψ〉 . (23)

For each string x of length k, define a k-ly controlled
single-qubit rotation operator Ux1...xk acting on qubit k + 1
which maps:

Ux1...xk |x1 . . . xk〉 |0〉 = ξx1...xk0

ξx1...xk

|x1 . . . xk〉 |0〉

+ ξx1...xk1

ξx1...xk

|x1 . . . xk〉 |1〉 .

(24)

Each k-controlled operation can be implemented on the
nearest-neighbor architecture of the lattice with O(k2) depth
in the lattice using the implementation depicted in Fig. 4.10
of Ref. [42].

The brute-force algorithm for preparing |ψ〉 is the applica-
tion of 2n of these operations, as shown in the circuit diagram
of Fig. 2.

It can be shown by induction that after the first k rotations,
the resulting state is

∑
x1...xk∈{0,1}k ξx1...xk |x1 . . . xk〉, so after all

2n operations, the output state is∑
x1···xn∈{0,1}n

ξx1...xn |x1 . . . xn〉 =
∑

q∈{0,1}n

αq |q〉 = |ψ〉 . (25)

Although this algorithm is not efficient for arbitrary
quantum states, it is capable of efficiently preparing many

interesting and important states. For example, an n-qubit
Greenberger-Horne-Zeilinger (GHZ) state can be prepared on
a nearest-neighbor lattice using n layers by setting U = H ,
applying singly controlled cσx between successive qubits, and
discarding all other Ux1x2...xk operators.

C. Implementation of general quantum operators

Arbitrary U (2n) operations can be exactly implemented
on the lattice using a nullification algorithm similar to the
decomposition routines for classical optical meshes presented
in Refs. [1,3]. A more in-depth treatment of this problem can
be found in Ref. [59].

In linear algebra, QR factorization decomposes any unitary
matrix as U = QR, where R is diagonal and unitary and Q
is a product of two-level Givens rotations [59,60], which are
operations acting trivially on all but two basis vectors |m〉 , |n〉:

Gm,n(θ, φ) = eiφ cos θ |m〉〈m| − sin θ |m〉〈n|
+ eiφ sin θ |n〉〈m| + cos θ |n〉〈n|.

(26)

For any unitary matrix U , there exist values of θ, φ which
“nullify” a target element in row m or n of U [3]. Let Gj

m,n

denote the Givens rotation to nullify the element of U in row
m, column j, against the element in row n, column j. It can
be shown [59] that after applying O(4n) Givens rotations, we
obtain an identity matrix:⎡

⎣2n−1∏
j=1

2n∏
m= j+1

G2n− j
m,m−1

⎤
⎦U = 1. (27)

The operations G2n− j
m,m−1 do not correspond to any standard

quantum gates, but if the basis vectors are permuted to be
ordered in the reflected binary code [61], then the Givens rota-
tions between adjacent vectors |m〉 , |m − 1〉 can be written as
a product of (n − 1)-ly controlled single-qubit rotations [62],
each of which can be performed with a lattice depth of O(n2).
Thus, the target operator U can be implemented as

U =
2n−1∏
j=1

2n− j∏
m= j

Gγ ( j)†

γ (2n−m+1),γ (2n−m), (28)

where γ ( j) denotes the index j in reflected binary order-
ing. The permutation for each of the O(4n) Givens rotations
requires O(n3) cσx gates, so the worst-case complexity is
O(n34n).

As with state preparation, although implementing the most
general quantum operators is hard, many important quantum
operators, such as the quantum Fourier transform, may be
efficiently implemented using a lattice of polynomial depth.

IV. GRADIENT-BASED CIRCUIT OPTIMIZATION

In the previous section we discussed preparation of ar-
bitrary quantum states or operators by obtaining appro-
priate phase shifter values to implement an exact decom-
position of the desired operation using only single-qubit
and nearest-neighbor cσz gates. In this section, we demon-
strate a method, building on our previous work for classical
MZI networks [13,14] and on work for continuous-variable
quantum neural networks [63], of automatically discovering
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FIG. 3. Fixed connectivity scheme employed in training. The cσz

operators in odd columns are implicitly constructed by embedding σx

operations before and after physical cσz gates.

high-fidelity approximate decompositions of a target operator
using a gradient-based optimization approach. As shown in
Sec. IV A 4, these “learned” implementations of quantum
operators are often far more compact than an explicit decom-
position, allowing for lattices with a fraction of the physical
depth.

Let Uil = U (ζil , ξil , θil , φil ) denote the operation described
by Eq. (1) acting on qubit i performed by a single MZI in layer
l of the lattice. Each layer of the lattice refers to the column
of MZIs implementing Uil and a subsequent column of cσ i, j

z

gates between qubits i and j.
Because the strength of the cσz interaction is not a con-

tinuous variational parameter [since the only valid settings
are η = 0 (off) or η = π

2 (on), as discussed in Sec. II B], in
our numerical experiments, we employ a checkerboard-style
connectivity where half of the cσz gates are disconnected, as
shown in Fig. 3. In a given layer, the cσz gates are applied
to each pair of adjacent qubits with an offset determined
by the parity of the layer index. Additionally, we implicitly
embed logical σx gates in the single-qubit operators preceding
and following two-qubit gates in odd layers such that Ui,n �→
Ui,nσx and Ui,n+1 �→ σxUi,n+1 for odd n; this transforms the
cσz gates applied in odd layers into cσz gates without adding
to the depth of the lattice.

The operation performed on an N-qubit quantum state by a
lattice of depth L with this connectivity scheme is given by

U �� =
L∏

l=1

⎡
⎣⊗

i∈C(l )

cσ i,i+1
z ·

N⊗
i=1

U (ζil , ξil , θil , φil )

⎤
⎦, (29)

where �� denotes all free parameters {ζil , ξil , θil , φil} in
the lattice, where the set of cσz connections is C(l ) =
{1, 3, 5, . . . , 2�N

2 � − 1} [C(l ) = {2, 4, 6, . . . , 2�N
2 �}] for odd

[even] l , and where left-multiplication and padding with iden-
tity are implicit.

Let F (ψ̃, ψ ) = |〈ψ̃ |ψ〉|2 denote the fidelity between states
|ψ̃〉 and |ψ〉. To implement a target operator Û , the optimiza-
tion routine finds a set of parameters �� which maximizes the
average fidelity F = | 〈ψin|U†

��Û |ψin〉 |2 over a “training set”
of input states {ψin}. The algorithm computes the gradient
∇��F of the fidelity over the training states with respect to
the phase shift parameters and iteratively updates �� by a step
size η as �� �→ �� + η∇��F over the course of the training. In
the case of operator implementation, {ψin} are an ensemble
of uniformly randomly sampled state vectors, while for state
preparation, {ψin} = {|0〉⊗N }.
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FIG. 4. Optimization of a quantum circuit to prepare a four-qubit
GHZ state. (Top) Evolution of the output state |ψ̃〉 over the course of
training. The vertical axis represents the magnitude of the projection
〈ψ̃ |bj〉 of the output state onto each computational basis state |bj〉.
(Bottom) Fidelity between the output state and target state over the
course of training, reaching a maximum value of F ≈ 99.94%. The
shared horizontal axis indicates iterations during training.

A. Simulations

In the following sections we present a series of numerical
experiments in which a simulated logical model of a QPGA
is trained to implement a variety of quantum states and oper-
ators. The numerical model was programmed using a custom
backend built with TENSORFLOW [64].

For operator preparation simulations, we generate the train-
ing set {ψin} of random n-qubit state vectors by randomly
choosing 2n component magnitudes uniformly between [0,1),
then renormalizing the state vector and assigning each compo-
nent a random phase between [0, 2π ). The number of training
samples is empirically chosen but always greatly exceeds
2n. The corresponding target output states are produced by
running the input states through an explicitly constructed
quantum circuit simulated using the SQUANCH PYTHON frame-
work [65]. For state preparation simulations, the training set is
simply the zero state input |0〉⊗N , and the corresponding single
output state is directly compared against the target state.

For all simulations, we used the checkerboard connectivity
scheme described in the previous section. We initialized all
ζ , ξ , θ, φ phase shifters uniformly from [0, 2π ), optimized
the gate array using the Adam optimizer [66] with learning
rate annealing, and performed the training on an NVIDIA
Tesla K80 GPU.

1. GHZ state preparation

GHZ states [67] are maximally entangled multiqubit states
of the form 1√

2
(|00 . . . 0〉 + |11 . . . 1〉) and have important ap-

plications in quantum information and quantum cryptography
[68]. Figure 4 shows the optimization progress of a four-qubit
GHZ state. We simulated a small four-qubit QPGA with a
fixed depth of 20 layers. (As noted in Sec. III B, a four-qubit
GHZ state can be exactly implemented using only four circuit
layers, but we use the same simulated 20-layer device with
the checkerboard cσz connectivity for all simulations in this
section.) For visualization purposes, we used a low learning
rate and only displayed the first 100 iterations of training.
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FIG. 5. Training a 20-layer QPGA to prepare an ensemble of
randomly sampled four-qubit states. Fidelities between the output
and target states are shown over the course of each optimization. The
average fidelity at the end of training is F = 99.2%.

Using a deeper lattice with longer training, arbitrarily high
fidelities can be reached.

The stochastic nature of the initialization and optimization
routines means that the training converges nondeterministi-
cally. Shallower circuits have fewer variational parameters to
optimize and fewer layers to allow entanglement to propagate
between nearest-neighbor qubits, which can result in a final
fidelity which is far from unity. Deeper circuits have more
parameters to optimize but require greater computational re-
sources to simulate (and experimentally would have more
pronounced physical errors if this were being considered). The
number of layers in the circuit was empirically chosen to be a
small depth which would consistently reach F ≈ 1.

Due to the uniform initialization of the phase shifters in the
lattice, the model initially outputs a random, nonmaximally
entangled quantum state lacking any apparent structure. As
the optimization routine proceeds, the lattice produces states
which have increasingly large |0000〉 and |1111〉 components,
with the relative phase between these components approach-
ing 0, while the other components of the output state have van-
ishing amplitudes. After 100 iterations, the model generates a
state matching the target state with 99.94% fidelity.

2. Random state preparation

As discussed in Sec. III B, states with certain structures
and symmetries are easier to prepare than general quantum
states. To demonstrate the generality of the gradient-based
circuit optimization routine, we use it to prepare a sample of
random quantum states.7 The states are generated by choosing
2n component magnitudes and phases uniformly, as described
at the beginning of Sec. IV A. We choose n = 4 qubits and fix
a depth of 20 layers; the fidelities between the output states
and target states over the course of training are shown in
Fig. 5. The results show that a QPGA of this depth is sufficient
to create an arbitrary four-qubit state with high fidelity.

7While the gradient-based circuit decomposition method will not
bypass the exponential complexity of approximating general quan-
tum states and operators (see Ref. [42], Sec. 4.5.4), it is still informa-
tive to show that the method can implement states without specific
structure.
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Ũ50

FIG. 6. Optimization of a 20-layer QPGA to prepare a quantum Fourier transform on the four input qubits. (Top) The operators Ũi

implemented by the QPGA after i training epochs. Each square array represents the magnitude (relative to the maximum element) and phase
of the projection of the operator onto the lexicographically ordered computational basis states, encoded in the respective size and hue of the
squares. The final Ũ50 is visually indistinguishable from Û . (Bottom) Fidelity between the implemented and target operator over the course of
training. The final fidelity is F = 99.94%. An animated version of this figure showing the training of the implemented operator can be found
in the Supplemental Material [38].
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FIG. 7. Required circuit depths to implement a quantum Fourier
transform for a range of qubit numbers using explicit decomposition
(top solid line, blue) and using gradient-based decomposition (bot-
tom solid line, orange), which achieves a fidelity above 99.9%. Rel-
ative compactness of explicit- vs gradient-based decompositions is
depicted by the red dotted line. The approximate decompositions are
significantly more compact than the explicitly constructed circuits.

3. Quantum Fourier transform

The quantum Fourier transform is an important operator
which plays a key role in many quantum computing algo-
rithms, especially the eigenvalue estimation routine [42]. The
quantum Fourier transform operating on n qubits takes the
form

UQFT = 1

n

n−1∑
j=0

n−1∑
k=0

e2π i jk/n| j〉〈k|. (30)

For this simulation, we compare the trainable circuit against
the exact circuit implementation of the QFT, which has a
complexity of O(n2) (although the QFT can be approximated
to within an inverse polynomial in n using only O(n log n)
gates [69]).

Figure 6 shows the optimization of a QPGA to implement
a quantum Fourier transform on four input qubits. The explicit
decomposition of the QFT circuit requires 57 layers,8 but
a trained QGPA with only 20 layers achieves a near-unity
fidelity of F = 99.94%.

4. Circuit compactness analysis

In the previous sections, we have shown that gradient-
based circuit optimization can produce high-fidelity operators
which are significantly more compact than their explicitly
decomposed counterparts and are implementable on QPGAs
with significantly fewer layers. To better characterize this,
we performed a search over qubit number and circuit depth
to find trained circuits which match the target operator to
within some specified fidelity threshold. We used the quantum
Fourier transform as the target operator for this benchmark
due to its prevalence and complexity. The results are plotted
in Fig. 7.

To perform the compactness analysis, we iteratively trained
QPGAs of increasing depth to implement an n-qubit QFT

8We train against the explicit circuit provided in Ref. [42], Fig. 5.1,
but additionally add � n

2 � SWAP gates, since the output qubits in the
Fourier basis are otherwise in reverse order.

to a desired fidelity threshold, chosen to be F > 99.9%.
Multiple optimization routines were run at each depth, since
training does not converge deterministically due to random
initialization and the potential for getting stuck in a local
maxima, which is more pronounced at larger qubit numbers.9

We note that the final gradient-based QFT implementations
typically require only 1/4 to 1/3 as many layers as their
explicitly decomposed counterparts.

V. CONCLUSION

In this paper we have presented a photonic architecture
for a quantum programmable gate array capable of imple-
menting arbitrary quantum states, operators, and computa-
tions. The architecture, presented in Sec. II, extends universal
programmable optics to the quantum domain by employing
two-photon interactions from quantum emitters embedded
in the waveguides. This allows for deterministic multiqubit
gates which use a number of waveguides that are linear in
the number of qubits. The design parameterizes arbitrary
quantum circuits as a lattice of single-qubit gates implemented
by phase-modulated Mach-Zehnder interferometers and two-
qubit cσz gates with variable connectivity implemented by
a scattering process described in Sec. II B. By setting phase
shifter parameters to implement appropriate single-qubit op-
erations and to enable two-photon interactions where needed,
the lattice can be dynamically programmed to implement any
quantum circuit without hardware modifications.

In Sec. III, we showed that the logical system implemented
by the QPGA is computationally universal: any quantum oper-
ation can be mapped onto a corresponding set of phase shifter
parameters given a sufficiently large lattice. We described an
explicit algorithm for preparing arbitrary quantum states on
the lattice which are efficient for some subclasses of quantum
states, and we discussed how QR decomposition can map
U(2n) unitaries onto a series of controlled rotations in the
lattice.

In Sec. IV, we showed how gradient-based optimization
techniques prevalent in machine learning can be used to auto-
matically implement high-fidelity approximations to desired
quantum operations. We trained simulated QPGAs with fixed
cσz connectivity to prepare a variety of important quantum
states and operators, and we showed that these approximate
circuit implementations are often significantly more compact
than their explicitly decomposed counterparts.

While this work is purely theoretical, there has been
tremendous recent experimental progress in both of the key
technologies required to realize this device: programmable
photonic processors [4,8–11,16,70–72] and strongly coupled
quantum emitters [23–29,53]. The ongoing advancements in
these technologies may allow for feasible near-future imple-
mentation of the device described in this paper.

The source code for all experiments in this paper is avail-
able, see Ref. [74].

9For circuits with many qubits, more sophisticated initialization
routines which take the locally-connected structure of the architec-
ture into account such as Haar initialization [13] may be necessary to
ensure a reasonable chance of convergence.
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APPENDIX A: PHASE-MODULATED INTERFERENCE
FOR PHOTONS WITH ARBITRARY SPECTRA

Consider a Mach-Zehnder interferometer with four phase
shifters in the arrangement presented in Fig. 1(c). Let the oper-
ators â†

1(ω), â†
2(ω) represent creation operators for the top and

bottom waveguides, respectively, acting on a single frequency
mode ω. Consider an input state to the MZI representing a
single logical qubit in the state α |0L〉 + β |1L〉:

|ψ in〉 =
∫

dω φ(ω)(αâ†
1(ω) + βâ†

2(ω)) |∅〉 . (A1)

The phase shifters in the MZI act by imparting a time delay
τ on the creation operators, mapping â†(ω) �→ â†(ω)eiωτ .
(Here we make the approximation that the phase shifter
imparts an equal time delay across the range of frequen-
cies of the photon, e.g., has a constant refractive index.)
Let {τζ , τξ , τθ , τφ} ≡ {ζ , ξ , θ, φ}/ω0 denote the effective time
delays imparted by the four phase shifters, where ω0 denotes
the 4LS resonance frequency ω in the main text. The idealized
action of the MZI on photons of zero spectral width described
in Eq. (1) is Rα

βHRθ HRφ . In the case of finite spectral width,
the transformation maps as follows:[

â†
1(ω)

â†
2(ω)

]

← 1

2

[
ei(τζ +τφ )ω

(
eiτθ ω + 1

)
ei(τξ +τφ )ω

(
eiτθ ω − 1

)
eiτζ ω
(
eiτθ ω − 1

)
eiτξ ω
(
eiτθ ω + 1

)
]

×
[

â†
1(ω)

â†
2(ω)

]
. (A2)

Thus, the output state of the MZI is the following:

|ψout〉 = 1

2

∫
dω φ(ω)([αei(τζ +τφ )ω(eiτθ ω + 1)

+βei(τξ +τφ )ω(eiτθω − 1)]â†
1(ω)

+ [αeiτζ ω(eiτθ ω − 1) + βeiτξ ω(eiτθ ω + 1)]â†
2(ω)) |∅〉 .

(A3)

Define coefficients C0(ω) ≡ 1
2 [αei(τζ +τφ )ω(eiτθω + 1) +

βei(τξ +τφ )ω(eiτθω − 1)] and C1(ω) ≡ 1
2 [αeiτζ ω(eiτθω − 1) +

βeiτξ ω(eiτθω + 1)]. Then the output state is |ψout〉 =∫
dω φ(ω)[C0(ω)â†

1(ω) + C1(ω)â†
2(ω)] |∅〉. Define projection

operators P̂0, P̂1 which map physical wave functions to logical
state vectors:

P̂0 =
∫

dω |0L〉 〈∅| â1(ω), (A4)

P̂1 =
∫

dω |1L〉 〈∅| â2(ω). (A5)

To obtain the fidelity of the physical output state against
the target logical output state |ψ targ〉 = CL

0 |0〉 + CL
1 |1〉, we

evaluate the inner product between the states by expanding

101 102 103 104 105

Normalized pulse length ω0 · δt

10−11

10−9

10−7

10−5

10−3

10−1

In
fid

el
it
y

1
−
F

Minimum
Mean
Maximum

FIG. 8. Infidelities of the output state of a Mach-Zehnder inter-
ferometer for a range of spectral distributions. We assume an input
wave function of |ψ in〉 = ∫ dω gδt (ω) 1√

2
[â†

1 (ω) + â†
2 (ω)] |∅〉, where

gσ (ω) is a Gaussian with a spectral width of σ = δω

ω0
and a pulse

length of δt = 1
2δω

periods of the central frequency ω0. We compute
the output wave function for an ensemble of 1000 values of ζ , ξ, θ, φ

sampled uniformly from [0, 2π ) across 250 values of σ and plot the
maximum, minimum, and average infidelity (defined as 1 − F ) for
each case, depicted as the bottom, middle, and top lines, respectively.

in terms of the complete basis 1 = P̂0 + P̂1:
F =|〈ψ targ|ψout〉|2

=
∣∣∣∣(CL∗

0 〈0L| + CL∗
1 〈1L| ) ∫ dω φ(ω)

× [C0(ω)â†
1(ω) + C1(ω)â†

2(ω)] |∅〉
∣∣∣∣
2

=
∣∣∣∣(CL∗

0 〈0L| + CL∗
1 〈1L| )(P̂0 + P̂1)

∫
dω φ(ω)

× [C0(ω)â†
1(ω) + C1(ω)â†

2(ω)] |∅〉
∣∣∣∣
2

=
∣∣∣∣
∫

dω φ(ω)
[
CL∗

0 C0(ω) + CL∗
1 C1(ω)

]∣∣∣∣
2

. (A6)

The fidelity of the output state will depend on the phase
shifter values. We numerically simulate the output wave func-
tions for a large sample of ζ , ξ , θ, φ across a range of spectral
widths and plot the results in Fig. 8.

APPENDIX B: DERIVATION OF REFLECTION
COEFFICIENTS

In this section we derive the reflection coefficients pre-
sented in Sec. II B using a similar treatment of the problem
as in Ref. [35]. To simplify the derivation, we replace the
Hamiltonian in Eq. (6) with an ad hoc Hamiltonian:

Had-hoc = h̄

i

∫
dx

[
b̂†R(x)

∂

∂x
b̂R(x) − b̂†L(x)

∂

∂x
b̂L(x)

]

+ h̄
4∑

n=2

(
�n − i�′

2

)
|n〉〈n|

+ h̄
∫

dx
√

�/2 δ(x)[(b̂†R(x)

+ b̂†L(x))(|1〉〈2| + |3〉〈2| + |3〉〈4|) + H.c.], (B1)
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where we have also set vg = vr = 1. With this approach,
the Hilbert space contains only waveguide and atom states,
without the environmental reservoir. This ad hoc approach
is known to produce correct scattering matrices for single-
photon (and temporally separated multiphoton) interactions
and is thus suitable for our purposes, but it should be noted
that the direct substitution of � → � − i�′/2 in the Hamil-
tonian rather than in the scattering matrix will yield incorrect
results for temporally overlapping two-photon scattering [36].

Step 1. Consider the dynamics of a single quantum emitter
in the device from sites (4a) to (6a) in Fig. 1(c). Photon A at
frequency ω = �12 = �34 is incident on the atom, which is
initialized in state |1〉. The stationary state of the system is

|ψ1〉 =
∫

dx[φ1R(x)b̂†R(x) + φ1L(x)b̂†L(x)] |∅〉 ⊗ |1〉

+ e2 |∅〉 ⊗ |2〉 +
∫

dx[φ3R(x)b̂†R(x) + φ3L(x)b̂†L(x)]

× |∅〉 ⊗ |3〉 , (B2)

where the amplitude of the φ wave packets correspond to the
component of the photon which is in the spatial mode being
considered [35,37]. Using the Schrödinger equation H |ψ1〉 =
h̄ω |ψ1〉, where H is given in Eq. (B1), and defining a coupling
constant V ≡ √vg�/2 we obtain(

−i
d

dx
− ω

)
φ1R(x) + V δ(x)e2 = 0, (B3a)(

+i
d

dx
− ω

)
φ1L(x) + V δ(x)e2 = 0, (B3b)(

−i
d

dx
− ω′
)

φ3R(x) + V δ(x)e2 = 0, (B3c)(
+i

d

dx
− ω′
)

φ3L(x) + V δ(x)e2 = 0, (B3d)

− i�′

2
e2 + V [φ1R(0) + φ1L(0) + φ3R(0) + φ3L(0)] = 0.

(B3e)

Defining k ≡ ω/c and k′ ≡ ω′/c = �32/c, and follow-
ing the treatment in Refs. [35,37], we assume a solution
ansatz of

φ1R(x) = e+ikx[θ (−x) + β1Rθ (x)], (B4a)

φ1L(x) = e−ikx[α1Lθ (−x) + β1Lθ (x)], (B4b)

φ3L(x) = e−ik′x[β3Lθ (−x)], (B4c)

φ3R(x) = e+ik′x[β3Lθ (−x) + α3Rθ (x)], (B4d)

where θ is the Heaviside function with θ (0) ≡ 1
2 . Here, β

coefficients describe parts of the wave function between the
relevant reflector and the 4LS, while α coefficients describe
parts which are outside the 4LS (the input-output waveguide
for the ω photon and the delay line for the ω′ photon). The
reversal of direction of x for φ1 and φ3 is due to the opposite
orientation of the reflectors for ω and ω′, respectively. The
reflective boundary conditions at x = ±a means that

φ1R(a) + φ1L(a) = 0 = φ3L(−a) + φ3R(−a). (B5)

Using this and substituting Eqs. (B4) into (B3) gives us the
solution

r11 = α1L = e2iωa
i�′
2 − i�

2 (e2iω′a − e−2iωa)

− i�′
2 + i�

2 (e2iω′a + e2iωa − 2)
, (B6)

r13 = α3R =
i�
2 (e2iωa − 1)(e2iω′a − 1)

− i�′
2 + i�

2 (e2iω′a + e2iωa − 2)
. (B7)

Step 2. We now send in the second photon B, also of
frequency ω, which will scatter off of the |1〉 component of the
4LS state in the same manner as the first photon. We assume
that the temporal separation of photons A and B is much
greater than the decay timescale of the excited |2〉 , |4〉 states,
and since ω is off resonance from the |3〉 ↔ |2〉 transition at
ω′, then B will interact with the |3〉 ↔ |4〉 transition only. The
single-photon scattering eigenstate for the |3〉 component of
the 4LS state then takes the form

|ψ2〉 =
∫

dx[φ3R(x)b̂†R(x) + φ3L(x)b̂†L(x)] |∅〉 ⊗ |3〉
+ e4 |∅〉 ⊗ |4〉 . (B8)

As before, applying the ad hoc Hamiltonian to H |ψ2〉 =
h̄ω |ψ2〉, we obtain the following equations of motion:(

−i
d

dx
− ω

)
φ3R(x) + V δ(x)e4 = 0, (B9a)

(
+i

d

dx
− ω

)
φ3L(x) + V δ(x)e4 = 0, (B9b)

− i�′

2
e4 + V [φ3R(0) + φ3L(0)] = 0. (B9c)

Assuming a solution ansatz of

φ3R(x) = e+ikx[θ (−x) + β3Rθ (x)], (B10a)

φ3L(x) = e−ikx[α3Lθ (−x) + β3Lθ (x)], (B10b)

where k is defined as before, and imposing reflective boundary
conditions that φ3R(a) + φ3L(a) = 0, we obtain the reflected
amplitude to be

R3 = α3L =
i�′
2 e2iωa + i�

2 (1 − e2iωa)

− i�′
2 − i�

2 (1 − e2iωa)
. (B11)

Step 3. The A′ photon of frequency ω′ has traveled down
the delay line and back and is incident on the 4LS, which is
in some superposition of |1〉 and |3〉. The photon is far off-
resonance from the |1〉 ↔ |2〉 transition so will only interact
with the |3〉 ↔ |2〉 transition. Using the same approach as
before, we obtain reflection amplitudes which are analogous
to Eqs. (B6) and (B7), except with ω and ω′ switched:

r33 = e2iω′a
i�′
2 − i�

2 (e2iωa − e−2iω′a)

− i�′
2 + i�

2 (e2iωa + e2iω′a − 2)
, (B12)

r31 =
i�
2 (e2iω′a − 1)(e2iωa − 1)

− i�′
2 + i�

2 (e2iωa + e2iω′a − 2)
. (B13)

Step 4. The B′ photon of frequency ω′ has returned to
the 4LS, which is in some different superposition of |1〉 and
|3〉. As before, the photon only interacts with the |3〉 ↔ |2〉
transition and has identical reflection coefficients as step 3.
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APPENDIX C: IMPLEMENTATIONS OF COMMON QUANTUM GATES

Phase shifter parameters which implement various common single- and two-qubit quantum gates are detailed here in
Tables I and II.

TABLE I. A table of phase shifter parameters which implement various common single-qubit gates on the phase-modulated MZIs depicted
in Fig. 1(c).

Operator Matrix representation ζ ξ θ φ

Identity 1 =
(

1 0
0 1

)
0 0 0 0

Hadamard H = 1√
2

(
1 1
1 −1

)
5π

4
3π

4
π

2
π

2

Pauli X σx =
(

0 1
1 0

)
π π π 0

Pauli Y σy =
(

0 −i
i 0

)
3π

2
π

2 π 0

Pauli Z σz =
(

1 0
0 −1

)
0 π 0 0

Rotation X Rx (θ ′) = cos θ ′
2 1 − i sin θ ′

2 σx −2θ ′ −2θ ′ θ ′ 0

Rotation Y Ry(θ ′) = cos θ ′
2 1 − i sin θ ′

2 σx −2θ ′ − π

2 −2θ ′ θ ′ π

2

Rotation Z Rz(θ ′) = cos θ ′
2 1 − i sin θ ′

2 σz − θ ′
2

θ ′
2 0 0

Phase shift Rφ′ =
(

1 0
0 eiφ

)
0 φ′ 0 0

TABLE II. Construction of common multiqubit gates by embedding single-qubit operations in a lattice of cσz gates. Because the phase-
modulated MZIs can implement any single-qubit operator, gate decompositions may be terminated either with cσz gates or with single-qubit
gates, as the first layer of single-qubit operators of subsequent gates can implicitly include the final single-qubit operators of the previous
logical gate. All quantum circuit diagrams in this paper were typeset using the QCIRCUIT LATEX package [73].
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